ООО «ПРОИЗВОДСТВЕННОЕ ОБЪЕДИНЕНИЕ ОВЕН»

СОГЛАСОВАНО
Руководитель ГЦИ СИ
ФГУН «ВНИИМС»
В. Н. Яншин
200 г.

Система обеспечения единства измерений Российской Федерации

ИЗМЕРИТЕЛЬ ПИД - РЕГУЛЯТОР УНИВЕРСАЛЬНЫЙ ПРОГРАММНЫЙ ТРМ151

МЕТОДИКА ПОВЕРКИ КУВФ.421214.003 МП

СОДЕРЖАНИЕ

1	Введение	3
2	Основные технические характеристики	4
3	Операции поверки	5
4	Средства поверки	6
5	Требования безопасности	6
6	Условия поверки и подготовка к поверке	7
7	Проведение поверки	7
7.1	Внешний осмотр	7
7.2	Проверка электрического сопротивления изоляции	7
7.3	Опробование	8
7.4	Определение основной приведённой погрешности прибора	10
7.5	Определение основной приведённой погрешности	
	цифроаналоговых преобразователей (ЦАП) «параметр-ток»	13
8	Оформление результатов поверки	15
	Приложение A «Нестандартизованные термопреобразователи	16
	сопротивления»	

1 ВВЕДЕНИЕ

Настоящая методика поверки (далее по тексту - методика) распространяется на измеритель ПИД - регулятор универсальный программный TPM151 и устанавливает методы и средства их первичной и периодической поверок.

<u>Примечание</u>. Далее по тексту вышеперечисленные измерители ПИД - регуляторы универсальные программные могут иметь обобщенное название «прибор» или «прибор TPM151». При необходимости указывается модификация прибора и его исполнение (например, TPM151 – Щ1.PP).

В настоящей методике поверки приняты следующие сокращения:

- ВУ выходное устройство;
- НСХ номинальная статическая характеристика преобразования;
- ПИД пропорционально-интегрально-дифференциальный (регулятор);
- РЭ руководство по эксплуатации;
- СИ средство измерений;
- ТСМ термопреобразователь сопротивления медный;
- ТСП термопреобразователь сопротивления платиновый;
- ЦАП цифроаналоговый преобразователь.

Приборы TPM151 выпускаются в различных исполнениях, отличающихся конструктивным исполнением и типом встроенных BУ.

Информация об исполнении прибора зашифрована в коде полного условного обозначения TPM151 следующим образом:

Символы кода модификаций расшифровываются следующим образом:

Тип прибора: ТРМ151.

Конструктивное исполнение:

Н - корпус для настенного крепления (габаритные размеры 130х105х65 мм);

Щ1 - корпус для щитового крепления (габаритные размеры 96х96х70 мм);

Тип встроенных ВУ:

P – реле электромагнитное;

К – оптопара транзисторная n-p-n-типа;

С – оптопара симисторная;

И – цифроаналоговый преобразователь «параметр – ток 4...20 мА»;

У – цифроаналоговый преобразователь «параметр – напряжение 0...10 В»;

Т – выход для управления внешним твердотельным реле.

2 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Типы применяемых первичных преобразователей, диапазоны измерения, пределы допускаемой основной приведенной погрешности и разрешающая способность приведены в таблице 1.

Таблица 1

Тип первичного преобразователя (HCX)	Диапазон измерения	Разрешающая способность	Пределы основной допускаемой приведённой погрешности, %	
Термопреобразователи сопротивле	ения по ГОСТ 6651-94 ^{*)}			
TCM (Cu 50) $W_{100} = 1,4260$	-50+200 °C	0,1 °C	± 0,25	
TCM (50M) $W_{100} = 1,4280$	-190+200 °C	0,1 °C	± 0,25	
ТСП (Pt 50) $W_{100} = 1,3850$	-200+750 °C	0,1 °C	± 0,25	
ТСП (50П) $W_{100} = 1,3910$	-200+750 °C	0,1 °C	± 0,25	
TCM (Cu 100) W ₁₀₀ =1,4260	-50+200 °C	0,1 °C	± 0,25	
TCM (100M) W ₁₀₀ =1,4280	-190+200 °C	0,1 °C	± 0,25	
ТСП (Pt 100) W ₁₀₀ =1,3850	-200+750 °C	0,1 °C	± 0,25	
ТСП (100П) W100 =1,3910	-200+750 °C	0,1 °C	± 0,25	
TCH (100H) W ₁₀₀ =1,6170	−60+180°C	0,1 °C	± 0,25	
TCM (Cu 500) W ₁₀₀ =1,4260	−50…+200°C	0,1 °C	± 0,25	
TCM (500M) $W_{100} = 1,4280$	-190+200 °C	0,1 °C	± 0,25	
ТСП (Pt 500) $W_{100} = 1,3850$	-200+750 °C	0,1 °C	± 0,25	
ТСП (500П) $W_{100} = 1,3910$	-200+750 °C	0,1 °C	± 0,25	
TCH (500H) W ₁₀₀ =1,6170	−60+180°C	0,1 °C	± 0,25	
TCM (Cu 1000) W ₁₀₀ =1,4260	−50…+200°C	0,1 °C	± 0,25	
TCM (1000M) W ₁₀₀ =1,4280	-190+200 °C	0,1 °C	± 0,25	
ТСП (Pt 1000) W ₁₀₀ =1,3850	-200+750 °C	0,1 °C	± 0,25	
ТСП (1000П) $W_{100} = 1,3910$	-200+750 °C	0,1 °C	± 0,25	
TCH (1000H) W ₁₀₀ =1,6170	−60+180°C	0,1 °C	± 0,25	
Термопары по ГОСТ Р 8.585 -2001			1	
TXK (L)	-200+800°C	0,1°C	± 0,5	
ТЖК (Ј)	-200+1200°C	0,1°C	± 0,5	
THH (N)	-200+1300°C	0,1°C	± 0,5	
TXA (K)	-200+1300°C	0,1°C	± 0,5	

TIIII (S)	0+1750°C	0,1°C	± 0,5
TIIII (R)	0+1750°C	0,1°C	± 0,5
ТПР(В)	+200+1800°C	0,1°C	± 0,5
TBP(A-1)	0+2500°C	0,1°C	± 0,5
TBP(A-2)	0+1800°C	0,1°C	± 0,5
TBP(A-3)	0+1800°C	0,1°C	± 0,5
TMK(T)	-200+400°C	0,1°C	± 0,5
Сигналы постоянного напряжения	и тока по ГОСТ 26.011		
05 мА	0100%	0,1%	± 0,25
020 мА	0100%	0,1%	± 0,25
420 мА	0100%	0,1%	± 0,25
-5050 мВ	0100%	0,1%	± 0,25
01 B	0100%	0,1%	± 0,25

Примечания: *) В приборе предусмотрена возможность применения нестандартизованных термопреобразователей сопротивления, НСХ и диапазоны измерений которых приведены в Приложении А.

 W_{100} – отношение сопротивления датчика, измеренного при температуре $100\,^{\circ}\mathrm{C}$, к его сопротивлению, измеренному при $0^{\circ}\mathrm{C}$.

При измерении температуры минус 100 °C и ниже - разрешающая способность 1 °C.

Межповерочный интервал - 2 года.

3 ОПЕРАЦИИ ПОВЕРКИ

При проведении поверки должны выполняться операции, указанные в таблице 2.

Таблица 2

Наименование операции	Номер пункта	•	е операции при:
	методики	первичной поверке	периодической поверке
Внешний осмотр	7.1	Да	Да
Проверка электрического сопротивления изоляции	7.2	Нет	Да
Опробование	7.3	Да	Да
Определение основной приведенной погрешности	7.4	Да	Да
Определение основной приведенной погрешности цифроаналоговых преобразователей «параметр — ток» (для модификаций ТРМ151 с ВУ типа «И») и «параметр — напряжение» (для модификаций ТРМ151 с ВУ типа «У»)	7.5	Да	Да

4 СРЕДСТВА ПОВЕРКИ

При проведении поверки приборов должны применяться средства измерений, указанные в таблице 3.

Таблица 3

	1
Наименование и тип СИ	Основные технические характеристики
Компаратор напряжений Р 3003	кл. т. 0,0005
Калибратор тока П 321	осн. погрешность $\pm 0,01\%$ в диапазоне от 10^{-9} до 10 А
Калибратор напряжения П320	предел 100 мВ, $\delta = \pm 0.015 \%$
Дифференциальный вольтметр B1-12	Класс точности в режиме дифференциального вольтметра – 0,005
Магазин сопротивлений Р4831	кл. т. 0,02/2·10 ⁻⁶
Магазин сопротивлений Р3026	кл. т. 0,005
Вольтметр универсальный В7–53/1	диапазоны измерений (0300) В, (01) А
Частотомер Ч3-35А	диапазон измерения от 10 Гц до 50 МГц, с погрешностью измерения 2•10 ⁻⁷ .
Мегомметр M4100/1 (U=100 B) Мегомметр M4100/3 (U= 500B)	кл. т. 1,0 диапазон измерений (0500)МОм
Термометр ТЛ – 4	от 0 до 55°C, ц. д. 0,1°C
Термостат нулевой типа ТН-12.	Градиент температур не более 0,03 °С/м

Примечания:

- 1 Допускается применение других средств измерений и испытательного оборудования, обеспечивающих необходимые основные параметры и характеристики (погрешность которых не превышает $^1/_3$ предела допускаемого значения основной погрешности поверяемого прибора (ГОСТ 22261-94)).
- 2 Средства измерений должны быть исправны и поверены в соответствии с правилами по метрологии ПР50.2.006-94.

5 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 5.1 При проведении поверки необходимо соблюдать требования ГОСТ 12.3.019 92, «Правил технической эксплуатации электроустановок потребителей», «Правил техники безопасности при эксплуатации электроустановок потребителей».
- 5.2 Любые подключения приборов ТРМ151 производить только при отключенном питании прибора.

ВНИМАНИЕ - На открытых контактах клеммных колодок прибора напряжение опасное для жизни (220 В).

5.3 К выполнению измерений должны допускаться лица, изучившие РЭ на приборы TPM151, знающие принцип действия используемых при проведении измерений средств измерений и прошедшие инструктаж по технике безопасности (первичный и на рабочем месте) в установленном в организации порядке.

6 УСЛОВИЯ ПОВЕРКИ И ПОДГОТОВКА К ПОВЕРКЕ

6.1 При проведении поверки необходимо соблюдать следующие условия:

- температура окружающего воздуха

 (20 ± 5) °C;

- относительная влажность воздуха

от 30 % до 80 %;

- атмосферное давление

84,0...106,7 кПа ((630...800) мм рт. ст.);

- напряжение питающей сети

 $(220 \pm 11) B;$

- частота питающей сети

 (50 ± 1) Гц;

- время выдержки ТРМ151 во включенном состоянии, не менее 20 мин.

6.2 Подготовка к поверке

- 6.2.1 Подготовить к работе поверяемый прибор в соответствии с указаниями, изложенными в РЭ на TPM151.
- 6.2.2 Подготовить к работе средства поверки в соответствии с эксплуатационными документами на них.
- 6.2.3 Управление работой прибора при поверке, задание его программируемых параметров должны производиться в соответствии с указаниями РЭ на прибор.

7 ПРОВЕДЕНИЕ ПОВЕРКИ

7.1 Внешний осмотр

- 7.1.1 При проведении внешнего осмотра должно быть проверено соответствие ТРМ151 следующим требованиям:
- TPM151 должен быть представлен на поверку с эксплуатационной документацией, входящей в комплект поставки прибора (паспорт и руководство по эксплуатации).
- ТРМ151 должен быть чистым и не иметь механических повреждений на корпусе и лицевой панели;
- ТРМ151 не должен иметь механических повреждений входных и выходных клеммных соединителей;
 - на TPM151 должна быть необходимая маркировка.
- 7.1.2 При обнаружении механических дефектов, а также несоответствия маркировки эксплуатационной документации определяется возможность проведения поверки, а также дальнейшего использования прибора по назначению.

7.2 Проверка электрического сопротивления изоляции

7.2.1 Проверку электрического сопротивления изоляции в нормальных климатических условиях проводить по методике, изложенной в ГОСТ 12997.

Измерение сопротивления изоляции проводить при помощи мегомметра M4100/1 или M4100/3 в зависимости модификации TPM151.

На время испытаний в приборах контакты с 9 по 14 включительно соединить между собой перемычками.

- 7.2.2 Величина испытательного напряжения постоянного тока при измерении сопротивления изоляции и точки его приложения при испытаниях для TPM151 приведены в таблице 4.
- 7.2.3 Прибор считают выдержавшим испытание, если измеренное сопротивление изоляции для любой из приведенных пар точек не менее 20 МОм.

Таблица 4

	Испытательное	Номера контактов для подключения
Вариант модификации	напряжение, В	испытательного напряжения
прибора	(тип	
	мегомметра)	
TPM151-PP	500	конт. 1 и конт. 3, 5, 6, 8, 15;
ТРМ151-УУ	(M4100/3)	конт. 3 и конт. 5, 6, 8, 15;
		конт. 5 и конт. 6, 8, 15;
		конт. 6 и конт. 8, 15;
		конт. 8 и конт.15;
		корпус и конт. 1, 3, 5, 6, 8, 15
	100	корпус и конт. 10
	(M4100/1)	
TPM151-KK	500	конт. 1 и конт. 5, 8, 15;
TPM151-CC	(M4100/3)	конт. 5 и конт. 8, 15;
ТРМ151-ИИ		конт. 8 и конт. 15;
		корпус и конт. 1, 5, 8, 15.
	100	корпус и конт. 10
	(M4100/1)	
TPM151-TT	500	конт. 1 и конт. 5,15;
	(M4100/3)	конт. 5 и конт. 15;
	,	корпус и конт. 1, 5, 8, 15.

100	корпус и конт. 10
(M4100/1)	

7.3 Опробование

- 7.3.1 Прибор подключить к питающему напряжению сети и в соответствии с указаниями руководства по эксплуатации TPM151 перевести его в режим «Программирование».
- 7.3.2 В соответствии с указаниями руководства по эксплуатации проверить во всех каналах заданные значения параметров коррекции измеряемых величин «Сдвиг характеристики» и «Наклон характеристики» и установить их равными соответственно «000,0» и «1,000».
- 7.3.3 В соответствии с указаниями руководства по эксплуатации отключить во всех каналах цифровые фильтры, установив в параметрах «Постоянная времени фильтра» и «Полоса пропускания фильтра» нулевые значения.
- 7.3.4 Функционирование кнопок управления прибором и работа его цифровой индикации проверяются при выполнении указанных в п.7.3.2, 7.3.3 действий, являющихся одновременно подготовительными для проведения дальнейших операций.
 - 7.3.5 Проверка исправности измерительных входов и каналов :
- 7.3.5.1 Проверка исправности входов, работающих с термопреобразователями сопротивления
- а) подготовить прибор к работе с HCX термопреобразователя сопротивления TCM (50M) $W_{100} = 1,4280;$
- б) к входу поверяемого канала прибора вместо термопреобразователя сопротивления подключить магазин сопротивлений Р4831. Подключение магазина к прибору производить с помощью трехпроводной линии по схеме подключения (рисунок 1). При этом сопротивления соединительных проводов должны быть равными и не превышать 15 Ом;

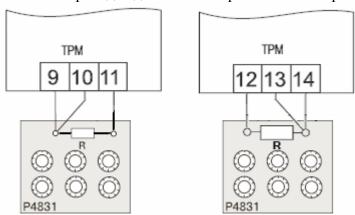
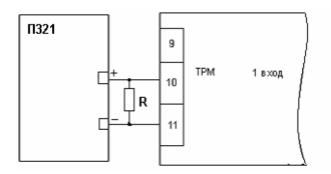



Рисунок 1

- в) установить величину сопротивления R = 51,07 Ом;
- г) снять показания прибора;
- д) считать прибор прошедшим испытания, если показания прибора удовлетворяют равенству (1)

$$T = 5 \pm 0.9 \,^{\circ}C$$
 (1)

- 7.3.5.2 Проверка исправности входов, работающих с унифицированным сигналом постоянного тока
 - а) подготовить прибор к работе с унифицированным сигналом 0 ... 20 мА;
- б) к входу поверяемого канала прибора вместо первичного преобразователя подключить калибратор тока $\Pi 321$ (рисунок 2); величина шунтирующего резистора R должна быть равна $100,0~\mathrm{Om}$

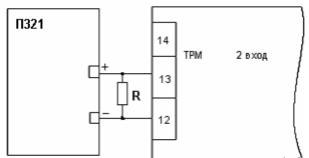
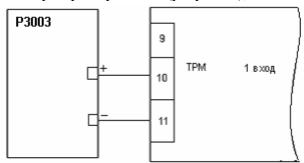



Рисунок 2

- в) установить для поверяемого канала в программируемом параметре «Нижняя граница диапазона измерения» значение «000.0», а в параметре «Верхняя граница диапазона измерения» значение «100.0» (см. руководство по эксплуатации ТРМ);
 - г) установить на выходе калибратора ток равный 10,0 мА;
 - д) снять показания прибора;
- е) считать прибор прошедшим испытания, если показания прибора удовлетворяют равенству (2)

$$\Pi = 50.0 \pm 0.5 \% \tag{2}$$

- 7.3.5.3 Проверка исправности входов, работающих с унифицированным сигналом постоянного напряжения и термопарами
 - а) подготовить прибор к работе с унифицированным сигналом 0 ... 1,0 В;
- б) К входу поверяемого канала прибора вместо первичного преобразователя подключить компаратор напряжений (рисунок 3);

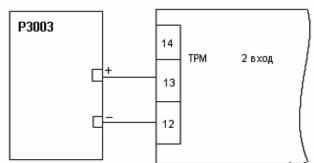


Рисунок 3

- в) установить для поверяемого канала в программируемом параметре «Нижняя граница диапазона измерения» значение «000.0», а в параметре «Верхняя граница диапазона измерения» значение «100.0» (см. руководство по эксплуатации TPM);
 - г) установить на выходе калибратора напряжение равное 250,0 мВ;
 - д) снять показания прибора;
- е) считать прибор прошедшим испытания, если показания прибора удовлетворяют равенству (3)

$$\Pi = 25,0 \pm 0,5 \% \tag{3}$$

7.4 Определение основной приведенной погрешности прибора

7.4.1 Контрольные точки для проверки диапазонов измерений и определения значения основной приведённой погрешности приведены в таблице 5.

Таблица 5

Таблица 5									
Тип первичного		Контрольные точки измеряемого диапазона, %							
преобразовате ля (НСХ)	0	5	25	50	75	95	100		
	Ом / (°С)	Ом / (°С)	Ом / (°С)	Ом / (°С)	Ом / (°С)	Ом / (°С)	Ом / (°С)		
TCM (Cu 50)	39,345	42,120	52,662	65,980	79,297	89,952	92,615		
$W_{100} = 1,426$	(-50)	(-37,0)	(12,5)	(75,0)	(137,5)	(187,5)	(200)		
TCM (50M)	8,140	12,570	29,960	51,070	71,923	88,605	92,775		
$W_{100} = 1,428$	(-190,0)	(-170,0)	(-92,5)	(5,0)	(102,5)	(180,5)	(200)		
ТСП (Pt 50)	9,260	19,445	57,288	101,555	142,567	173,027	180,320		
$W_{100} = 1,385$	(-200,0)	(-152,0)	(37,5)	(275)	(512,5)	(702,5)	(750)		
							102.260		
$TC\Pi (50\Pi)$ $W_{100} = 1,391$	8,650 (-200)	18,970 (-152,0)	57,403 (37,5)	102,375 (275)	144,055 (512,5)	174,955 (702,5)	182,360 (750)		
** 100 1,571	(200)	(132,0)	(37,3)	(273)			(750)		
TCM (Cu 100)	78,690	84,230	105,325	131,960	158,595	179,905	185,230		
$W_{100} = 1,426$	(-50)	(-37,0)	(12,5)	(75,0)	(137,5)	(187,5)	(200)		
TCM (100M)	16,280	25,140	59,920	102,140	143,845	177,210	185,550		
$W_{100} = 1,428$	(-190)	(-170,0)	(-92,5)	(5,0)	(102,5)	(180,5)	(200)		
ТСП (Pt 100)	18,950	38,890	114,575	203,110	285,135	346,055	360,640		
$W_{100} = 1,385$	(-199)	(-152,0)	(37,5)	(275)	(512,5)	(702,5)	(750)		
ТСП (100П)	17,300	37,940	114,805	204,750	288,110	349,910	364,720		
$W_{100} = 1,391$	(-200)	(-152,0)	(37,5)	(275)	(512,5)	(702,5)	(750)		
TCH (100H)	69,45	75,17	100,00	135,41	175,95	213,17	223,21		
$W_{100} = 1,617$	(-60)	(-48)	(0,0)	(60)	(120)	(168)	(180)		
TCM (Cu 500)	393,45	421.20	526.62	(50.90	792,97	899,52	926,15		
$W_{100} = 1,426$	(-50)	421,20 (-37,0)	526,62 (12,5)	659,80 (75,0)	(137,5)	(187,5)	(200)		
					710.22	006.05	007.75		
$TCM (500M)$ $W_{100} = 1,428$	81,40 (-190,0)	125,70	299,60 (-92,5)	510,70	719,23 (102,5)	886,05 (180,5)	927,75 (200)		
W 100 1,420		(-170,0)	(-92,3)	(5,0)					
TCH (500H)	347,25	375,85	500	677,05	879,75	1065,85	1116,05		
$W_{100} = 1,617$	(-60)	(-48)	(0,0)	(60)	(120)	(168)	(180)		
ТСП (Pt 500)	92,60	194,45	572,88	1015,55	1425,67	1730,27	1803,20		
$W_{100} = 1,385$	(-200,0)	(-152,0)	(37,5)	(275)	(512,5)	(702,5)	(750)		
ТСП (500П)	86,50	189,70	574,03	1023,75	1440,55	1749,55	1823,60		
$W_{100} = 1,391$	(-200)	(-152,0)	(37,5)	(275)	(512,5)	(702,5)	(750)		
TCM (Cu 1000)	786,90	842,30	1053,25	1319,60	1585,95	1799,05	1852,30		
$W_{100} = 1,426$	(-50)	(-37,0)	(12,5)	(75,0)	(137,5)	(187,5)	(200)		
TCM (1000M)	162,80		500.20	1001 40	1438,45	1772,10	1855,50		
$TCM (1000M)$ $W_{100} = 1,428$	(-190)	251,40 (-170,0)	599,20 (-92,5)	1021,40 (5,0)	(102,5)	(180,5)	(200)		
	189,50								
$TC\Pi \text{ (Pt 1000)} $ $W_{100} = 1,385$	(-199)	388,90 (-152,0)	1145,75 (37,5)	2031,10 (275)	2851,35 (512,5)	3460,55 (702,5)	3606,40 (750)		
		(-132,0)	(37,3)	(2/3)					
$TC\Pi (1000\Pi)$ $W_{100} = 1,391$	173,00 (-200)	379,40	1148,05	2047,50	2881,10 (512,5)	3499,10 (702,5)	3647,20 (750)		
		(-152,0)	(37,5)	(275)					
TCH (1000H)	694,50 (-60)	751,70	1000,00	1354,10	1759,50 (120)	2131,70 (168)	2232,10		
$W_{100} = 1,617$	(00)	(-48)	(0,0)	(60)	(120)	(100)	(180)		

Продолжение таблицы 5

Продолжение таблицы 5									
Тип первичного		Контро	льные то	чки измеря	емого диаг	газона, %			
преобразоват еля (НСХ)	0	5	25	50	75	95	100		
	мВ (°С)	мВ (°С)	мВ (°С)	мВ (°С)	мВ (°С)	мВ (°С)	мВ (°С)		
TXK (L)	-9,488	-7,831	3,306	22.843	44,709	62,197	66,466		
	(-200)	(-150)	(50)	(300)	(550)	(750)	(800)		
ТЖК (Ј)	-7,890	-5,801	8,010	27,393	48,715	65,525	69,553		
(-)	(-200)	(-130)	(150)	(500)	(850)	(1130)	(1200)		
THH (N)	-3,990	-2,902	5,098	18,672	33,346	44,773	47,513		
	(-200)	(-125)	(175)	(550)	(925)	(1225)	(1300)		
TXA (K)	-5,891	-4,276	7,140	22,776	38,323	49,746	52,410		
	(-200)	(-125)	(175)	(550)	(925)	(1225)	(1300)		
ТПП (S)	0,000	0,552	3,616	8,170	13,305	17,507	18,503		
11111(5)	(0)	(87)	(437)	(875)	(1312)	(1602)	(1750)		
ТПП (R)	0,000	0,552	3,795	8,887	14,798	19,705	20,877		
	(0)	(87)	(437)	(875)	(1312)	(1662)	(1750)		
ТПР (В)	0,178	0,372	1,792	4,834	8,956	12,666	13,591		
Tin (b)	(200)	(280)	(600)	(1000)	(1400)	(1720)	(1800)		
TBP (A-1)	0,000	1,706	10,028	19,876	27,844	32,654	33,640		
	(0)	(125)	(625)	(1250)	(1875)	(2375)	(2500)		
TBP (A-2)	0,000	1,191	7,139	14,696	21,478	26,180	27,232		
	(0)	(90)	(450)	(900)	(1350)	(1710)	(1800)		
TBP (A-3)	0,000	1,176	6,985	14,411	21,100	25,728	26,773		
	(0)	(90)	(450)	(900)	(1350)	(1710)	(1800)		
TMK (T)	-5,603 (-200)	-5,070 (170)	-1,819	4,279 (100)	12,013	19,030	20,872		
Унифицированн	(-200)	(-170) Контро	(-50) льные то	<u>(100)</u> чки измеря	(250) емого лиат	(370) 1 330H3. %	(400)		
ый	0	5	25	50	75	95	100		
входной сигнал	мА (%)	мА (%)	мА (%)	мА (%)	мА (%)	мА (%)	мА (%)		
05 мА	000,0	0,250	1,250	2,500	3,750	4,750	5,000		
	(0,0)	(5,0)	(25,0)	(50,0)	(75,0)	(95,0)	(100,0)		
020 мА	0,000	1,00	5,00	10,00	15,00	19,00	20,00		
020 MA	(0,0)	(5,0)	(25,0)	(50,0)	(75,0)	(95,0)	(100,0)		
	4,00	4,80	8,00	12,00	16,00	19,20	20,00		
420 мА	(0,0)	(5,0)	(25,0)	(50,0)	(75,0)	(95,0)	(100,0)		
01 B	мВ (%) 0,0	мВ (%) 50,0	мВ (%) 250,0	мВ (%) 500,0	мВ (%) 750,0	мВ (%) 950,0	мВ (%) 1000,0		
U1 D	(0,0)	(5,0)	(25,0)	(50,0)	(75,0)	(95,0)	(100,0)		
				, , ,					
-50,0+50,0 мB	-50,00 $(0,0)$	-45,00 (5,0)	-25,00 (25,0)	0,00 (50,0)	25,00 (75,0)	45,00 (95,0)	50,00 (100,0)		
Принуонон			(23,0)	(50,0)	(73,0)	` ' '	(100,0)		

Примечание - Контрольные точки для проверки диапазонов измерений и основной приведённой погрешности при работе с нестандартизованными термопреобразователями приведены в Приложении A.

7.4.2 Определение основной приведенной погрешности прибора при проведении первичной поверки

- 7.4.2.1 Подключить ко входу поверяемого прибора термоэлектродные провода, HCX которых, соответствуют HCX преобразования термопары TXK (L).
- 7.4.2.2 Концы проводов соединить с медными проводами и спаи их (свободные концы) поместить в нулевой термостат с дистиллированной водой и тающим льдом, не менее чем за 0,5 ч до начала поверки. Концы медных проводов подключить к компаратору напряжений.

Подключение производить по схеме, изображенной на рисунке 4.

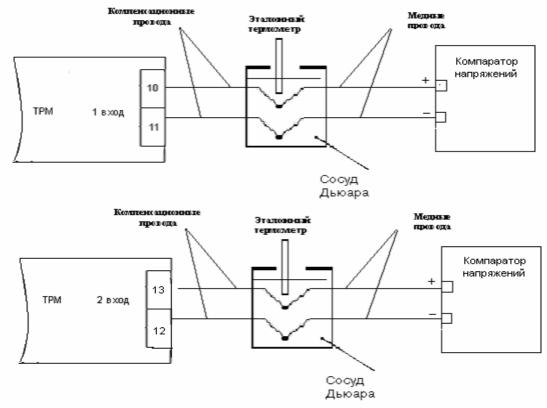


Рисунок 4

Температуру свободных концов контролировать с помощью эталонного термометра для введения поправки на температуру свободных концов (при температуре, отличающейся от $0\,^{\circ}\mathrm{C}$ более чем на $0.1\,^{\circ}\mathrm{C}$).

- 7.4.2.3 Последовательно устанавливать на компараторе напряжений, напряжения соответствующие контрольным точкам приведенных в таблице 5 для НСХ ТХК (L). Зафиксировать по установившимся показаниям цифрового индикатора, измеренную прибором TPM151 температуру для каждой из этих точек.
- 7.4.2.4 Рассчитать по формуле (4) основную приведенную погрешность измерения входных сигналов термопар.

$$\gamma = \frac{T_{\text{H3M}} - T_{\text{VCT}} - e}{T_{\text{H}}} \times 100\%, \qquad (4)$$

где: ү - основная приведённая погрешность прибора в контрольной точке, %;

 $T_{\text{изм}}$ - измеренное прибором значение температуры в заданной контрольной точке, ${}^{o}C;$

 $T_{yc\tau}$ - значение температуры в заданной контрольной точке по HCX термопреобразователя, ${}^{o}C;$

 $T_{\text{норм}}$ - нормирующее значение, равное разности максимальной и минимальной температур диапазона измеряемых температур прибором, ${}^{\rm o}C$.

е – поправка на температуру свободных концов компенсационых проводов, °С.

Результат считать положительным, если в каждой контрольной точке (для каждого канала) $|\gamma_2| < 0.5\%$.

7.4.3 Определение основной приведенной погрешности прибора при проведении периодической поверки

- 7.4.3.1 Определение основной приведенной погрешности прибора при известной комплектации прибора первичными преобразователями
- а) Если известно с какими первичными преобразователями работает прибор, поверку проводить по HCX этих преобразователей, при этом значения контрольных точек брать из таблицы 5.
 - б) Подключение производить:
- при поверке по HCX термопреобразователей сопротивления по схеме, приведённой на рисунке 1;
 - при поверке по НСХ термопар по схеме, приведённой на рисунке 4;
- при поверке по HCX унифицированного сигнала постоянного тока по схеме, приведённой на рисунке 2;
- при поверке по HCX унифицированного сигнала постоянного напряжения по схеме, приведённой на рисунке 3.
- в) Результат считать положительным, если в каждой контрольной точке (для каждого канала) величина основной приведённой погрешности соответствует значению, приведённому в таблице1.
- 7.4.3.2 Определение основной приведенной погрешности прибора при не известной комплектации прибора первичными преобразователями

Определение основной приведенной погрешности прибора при не известной комплектации прибора первичными преобразователями проводить по методике первичной поверки.

7.5 Определение основной приведенной погрешности цифроаналоговых преобразователей (ЦАП) «параметр - ток» и «параметр - напряжение»

7.5.1. В соответствии со схемами, приведенными на рисунках 5-8 подключить к выходам ТРМ151 типа "И" или "У" внешний источник постоянного напряжения 24 В, а в качестве нагрузки — магазин сопротивлений Р4831. При испытаниях напряжение на нагрузке контролировать при помощи дифференциального вольтметра В1-12.

Установить на магазине сопротивление нагрузки $R_{\rm H}$ равное 500,0 Ом для приборов с ВУ типа «И» или 2500,0 Ом для приборов с ВУ типа «У».

- 7.5.2. В соответствии с указания РЭ перевести выход прибора в режим ручного управления выходной мощностью.
- 7.5.3. Последовательно задавая значения выходной мощности равные 0, 5, 25, 50, 75, 95, 100 % в соответствии с таблицей 6. Измерить для каждой точки падение напряжения на сопротивлении нагрузки.

Таблина 6

Тиолици о							
Контрольные точки диапазона измерения, %	0	5	25	50	75	95	100
Выходной ток ЦАП, мА (для ВУ типа «И»)	4,00	4,80	8,00	12,00	16,00	19,20	20,00
Выходное напряжение ЦАП, В (для ВУ типа «У»)	0	0,50	2,50	5,00	7,50	9,50	10

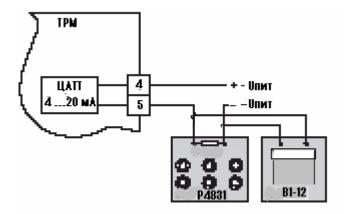


Рисунок 5 - Схема подключения к ВУ1 типа «И»

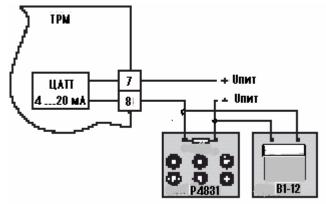


Рисунок 6 - Схема подключения к ВУ2 типа «И»

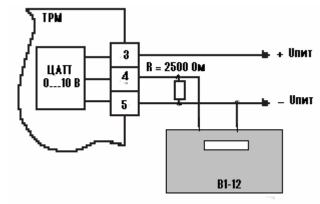


Рисунок 7 - Схема подключения к ВУ1 типа «У»

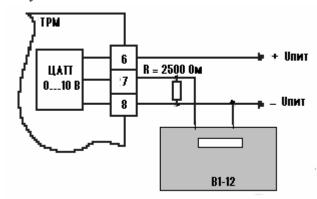


Рисунок 8 - Схема подключения к ВУ2 типа «У»

Для ВУ типа «И» рассчитать выходные токи ЦАП для каждой из контрольных точек по формуле (5):

$$I_{\text{\tiny Bbix}} = \frac{U}{R_{\text{\tiny H}}},\tag{5}$$

где: U – падение напряжения на сопротивлении нагрузки R_H , B;

 $R_{\rm H} = 500,000 \; {\rm Om} - {\rm conротивление} \; {\rm нагрузки} \; {\rm ЦАП}.$

Для ВУ типа «У» выходное напряжение ЦАП контролировать по падению напряжения на сопротивлении нагрузки.

7.5.4 Для каждой контрольной точки произвести расчет основной приведенной погрешности ЦАП по формуле (6).

$$\gamma_{3} = \frac{\left| A_{_{H3M}} - A_{_{PACY}} \right|}{Ahop_{M}} \times 100\% \tag{6},$$

где: γ_3 – основная приведенная погрешность ЦАП. %;

 $A_{\rm pacy} - \,$ значение выходного сигнала ЦАП по таблице 6;

 $A_{\rm норм}$ — нормирующее значение выходного сигнала равное разности между верхней и нижней границами диапазона выходного сигнала ЦАП.

Результат считать положительным, если в каждой контрольной точке выполняется неравенство (7)

$$|\gamma_3| + 0.021\% < 0.5\% \tag{7}$$

Где: $0.021\% = \sqrt{0.02^2 + 0.005^2}$ %, - относительная погрешность метода измерений,

где: 0,02 % - относительная погрешность измерений магазина сопротивлений Р4831;

 $0{,}005~\%$ - относительная погрешность измерений дифференциального вольтметра В1-12.

8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 8.1 Результаты поверки оформляются протоколом по форме, установленной метрологической службой, проводящей поверку.
- 8.2 Положительные результаты первичной поверки оформляются записью в паспорте с нанесением оттиска поверительного клейма.
- 8.3 При положительном результате периодической поверки выдается свидетельства о поверке.
- 8.4 При отрицательных результатах поверки TPM151 к эксплуатации не допускается, свидетельство о предыдущей поверке аннулируется и выдается извещение о непригодности TPM.

Приложение A (обязательное)

Нестандартизованные термопреобразователи сопротивления

Диапазоны измерения, пределы допускаемой основной приведенной погрешности и разрешающая способность с учетом модификации и конкретного исполнения приборов, работающих с нестандартизованными термопреобразователями сопротивления приведены в таблице A1.

Таблица А.1

Тип первичного	Диапазон	Разрешающая	Пределы
преобразователя	измерений	способность, %	основной
			приведенной
			погрешности, %
Нестандартизованный			
термопреобразователь			
сопротивления			
$TCM (53M) W_{100} = 1,4260$	−50+200°C	0,1°C	0, 25
(гр.23 по ГОСТ 6651-78)			,

Контрольные точки диапазона измерений для приборов, работающих с нестандартизованными термопреобразователями сопротивления, приведены в таблице А.2.

Таблина А.2

	1 иолици 1 1.2							
	Условное обозначение термопреобразователя	Контрольные точки диапазона измерения, %						
		0	5	25	50	75	95	100
	TCM (53M), W ₁₀₀ =1,4260 (гр.23 по ГОСТ 6651-78)	41,711 (-50)	44,535 (-37,5)	55,825 (12,5)	69,930 (75)	84,045 (137,5)	95,334 (187,5)	98,156 (200)