

Измеритель-регулятор универсальный восьмиканальный TPM138

Методика поверки КУВФ.421214.002 МП

СОДЕРЖАНИЕ

1.	Введение	3
2.	Операции поверки	4
3.	Средства поверки	4
4.	Требования безопасности	4
5.	Условия поверки и подготовка к ней	4
6.	Проведение поверки	5
7.	Оформление результатов поверки	10
	Ссылочные нормативные документы	11

1 ВВЕДЕНИЕ

- 1.1 Настоящая методика распространяется на измерители-регуляторы универсальные восьмиканальные типа ТРМ138 (в дальнейшем по тексту именуемые «прибор» или «ТРМ138»), предназначенные для измерения и автоматического регулирования температуры (при использовании в качестве входных датчиков термопреобразователей сопротивления или термопар), а также других неэлектрических величин, параметры которых предварительно преобразованы в унифицированные сигналы постоянного тока.
- 1.2 Методика устанавливает и определяет порядок и способы проведения первичной, периодической и послеремонтной поверки приборов ТРМ138 в процессе их эксплуатации.
- 1.3 Перечень первичных преобразователей (датчиков), с которыми может работать каждый канал прибора, их номинальные статические характеристики (HCX), диапазоны измерений и разрешающая способность TPM138 приведены в таблице1.

Единицы измерений параметров, отображаемые на цифровом индикаторе ТРМ138 соответствуют приведенным в таблице 1.

Таблица 1

	T	Таблица і						
Обозначения датчиков и их НСХ	Диапазон измерений	Разрешающая способность						
Термопреобразователи сопротивления по ГОСТ 6651-94								
TCM 50M W ₁₀₀ = 1,426	− 50 +200 °C	0,1 °C						
TCM 50M $W_{100}^{100} = 1,428$	− 190 +200 °C	0,1 °C						
ТСП 50П W ₁₀₀ = 1,385	− 200 +750 °C	0,1 °C						
ТСП 50П W ₁₀₀ = 1,391	− 200 +750 °C	0,1 °C						
TCM 100M $W_{100} = 1,426$	− 50 +200 °C	0,1 °C						
TCM 100M $W_{100} = 1,428$	− 190 +200 °C	0,1 °C						
$TC\Pi 100\Pi W_{100} = 1,385$	− 200 +750 °C	0,1 °C						
$TC\Pi 100\Pi W_{100} = 1,391$	– 200 +750 °C	0,1 °C						
По ГОСТ 6651-78								
ТСМ гр. 23	− 50 +200 °C	0,1 °C						
Термопары по ГОСТ Р 8.585								
TXK (L)	− 200+800 °C	0,1 °C						
ТЖК (Ј)	− 200+1200 °C	1 °C						
THH (N)	− 200+1300 °C	1 °C						
TXA (K	− 200+1300 °C	1 °C						
ΤΠΠ (S)	0+1750 °C	1 °C						
ТПР (В)	+200+1800 °C	1 °C						
TBP (A-1)	0+2500 °C	1 °C						
TBP (A-2)	0+1800 °C	1 °C						
TBP (A-3)	0+1600 °C	1 °C						
TMK (T)	− 200+400 °C	0,1 °C						
Сигналы постоянного напряж	ения и тока по ГОСТ 26.011							
0 5 мА	0100 %	0,1%						
020 мА	0100 %	0,1%						
420 мА	0100 %	0,1%						
– 50+50 мВ	– 50+50 мВ							
01 B	0100 %	0,1%						
Примечание – W ₁₀₀ – отношение сопротивления датчика, измеренное при температуре 100 °C, к его сопротивлению, измеренному при 0 °C.								

Примечание – Выпускаемые приборы могут иметь сокращенный перечень первичных преобразователей и более узкие (по сравнению с данными таблицы1) диапазоны измерений входных величин. Данные об этих параметрах приведены в эксплуатационной документации на конкретный прибор.

- 1.4 Предел основной приведенной погрешности прибора ± 0.25 % при работе с термопреобразователями сопротивления и активными датчиками и не более ± 0.5 % при работе с термопарами. (При работе с термопарами основная приведенная погрешность прибора без учета компенсации ЭДС свободных концов должно быть не хуже 0,25 %. Погрешность схемы коррекции ЭДС свободных концов термопары должна быть не хуже 0,25 %.)
- 1.5 Предел допускаемой основной приведенной погрешности измерительных преобразователей «параметр-ток» ± 0.25 %.
 - 1.6 Межповерочный интервал приборов ТРМ 138 2 года.

2 ОПЕРАЦИИ ПОВЕРКИ

2.1 Для проведения поверки выполняются операции, указанные в таблице 2.

Таблица 2

	Наименование операции	Номер пункта методики поверки
1	Внешний осмотр	6.1
2	Опробование	6.2
3	Определение основной приведенной погрешности	
	прибора	6.3
4	Определение основной приведенной погрешности	
	измерительных цифроаналоговых преобразователей	
	«параметр–ток» (для приборов ТРМ138-И)	6.4

3 СРЕДСТВА ПОВЕРКИ

3.1 При проведении поверки должны применяться нижеуказанные эталонные средства.

Магазин сопротивлений Р4831. ГОСТ 23737-79. Класс точности 0,02.

Прибор для поверки вольтметров, дифференциальный вольтметр В1-12.

класс точности в режиме калибратора напряжений – 0,0008;

класс точности в режиме калибратора токов – 0,025;

класс точности в режиме дифференциального вольтметра – 0,005.

Потенциометр постоянного тока ПП-63. ГОСТ 9245-79. Класс точности 0,05.

Сосуд Дьюара, заполненный смесью льда с дистиллированной водой (температура смеси 0 °C). Термопары по перечню, приведенному в таблице 1.

Примечания – Указанные средства поверки допускается заменять другими, с метрологическими характеристиками не хуже приведенных.

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 4.1 Прибор ТРМ138 относится к классу защиты 0 по ГОСТ 12.2.007.0-75.
- 4.2 При проведении поверки необходимо соблюдать требования ГОСТ 12.3.019-80, «Правил технической эксплуатации электроустановок потребителей», «Правил техники безопасности при эксплуатации электроустановок потребителей».
- 4.3 На открытых контактах клеммных колодок прибора при эксплуатации напряжение питания, опасное для человеческой жизни.
 - 4.4 Любые подключения к ТРМ138 производить только при отключенном питании прибора.
- 4.5 К работе с прибором должны допускаться лица, изучившие руководство по эксплуатации TPM138.

5 УСЛОВИЯ ПОВЕРКИ И ПОДГОТОВКА К НЕЙ

5.1 При проведении поверки соблюдать следующие условия:

температура окружающего воздуха 20 \pm 5 °C; относительная влажность воздуха 30...80 %; атмосферное давление 86,0...106,7 кПа, 630...800 мм рт.ст.; напряжение питающей сети 220 \pm 11 B; частота питающей сети 47... 63 Гц.

- 5.2 Перед проведением поверки выполнить перечисленные ниже подготовительные работы.
- 5.2.1 Подготовить к работе поверяемый прибор в соответствии с указаниями, изложенными в руководстве по эксплуатации, и выдержать его при температуре поверки не менее двух часов.
- 5.2.2 Подготовить к работе эталонное оборудование, используемое в поверке, в соответствии с его эксплуатационной документацией.

6 ПРОВЕДЕНИЕ ПОВЕРКИ

6.1 Внешний осмотр

- 6.1.1 При проведении внешнего осмотра визуально проверяется:
- отсутствие механических повреждений корпуса прибора и его лицевой панели;
- отсутствие механических повреждений выходных клеммных соединителей;
- наличие на приборе необходимой маркировки.

Кроме того, проверяется наличие эксплуатационной документации, входящей в комплект поставки прибора (паспорт и руководство по эксплуатации).

6.1.2 При обнаружении механических дефектов, а также при несоответствии маркировки или комплектности эксплуатационной документации определяется возможность дальнейшего использования прибора по назначению.

6.2 Опробование

- 6.2.1 Прибор подключают к питающей сети и выдерживают во включенном состоянии не менее 20 мин. После подачи питания на прибор проверяют работу цифровой индикации на его лицевой панели в соответствии с руководством по эксплуатации TPM138 (режим PAБОТА), а также корректность выдаваемой служебной информаци.
- 6.2.2 В соответствии с указаниями руководства по эксплуатации проверить во всех каналах заданные значения параметров коррекции измеряемых величин **in.SH** (сдвиг характеристики) и **in.SL** (наклон характеристики) и установить их равными соответственно **«000.0»** и **«1.000»**.
- 6.2.3 В соответствии с указаниями руководства по эксплуатации отключить во всех каналах цифровые фильтры, установив в параметрах **in.Fd** (постоянная времени фильтра) и **in.FG** (полоса пропускания фильтра) нулевые значения.
- 6.2.4 Функционирование кнопок управления прибором и работа его цифровой индикации проверяются при выполнении указанных в п.6.2.2, 6.2.3 действий, являющимися одновременно подготовительными для проведения дальнейших операций.

6.3 Определение основной приведенной погрешности прибора при измерении входных величин

6.3.1 Определение основной приведенной погрешности при работе с термопреобразователями сопротивления

- 6.3.1.1 К входу поверяемого канала прибора вместо термопреобразователя подключить магазин сопротивлений типа Р4831. Подключение магазина к прибору производить по трехпроводной схеме. При этом сопротивления соединительных проводов должны быть равными и не превышать 15 Ом.
- 6.3.1.2 Последовательно устанавливая на магазине сопротивления, соответствующие значениям входного сигнала в контрольных точках, приведены в таблице 3 (для заданной данному входу НСХ), зафиксировать по установившимся показаниям цифрового индикатора ТРМ138 измеренную прибором на поверяемом канале температуру для каждой из этих точек.

Примечание – Для приборов с более узкими диапазонами измерения входных величин (см. п. 1.3) значения контрольных точек таблицы 3 необходимо пересчитать.

Термопреобразователь ²⁾	Контрольные точки измеряемого диапазона, %						
	0	5	25	50	75	95	100
50M W ₁₀₀ = 1,426	39,340	42,035	52,662	65,980	79,297	89,952	92,615
01	(-50)	(-37,5)	(12,5)	(75)	(137,5)	(187,5)	(200)
50M W ₁₀₀ = 1,428	8,140	12,457	29,960	51,070	71,923	88,605	92,775
09	(-190)	(-170,5)	(-92,5)	(5,0)	(102,5)	(180,5)	(200)
50∏ W ₁₀₀ = 1,385	9,260	19,340	57,287	101,555	142,567	173,027	180,320
07	(-200)	(–152,5)	(37,5)	(275)	(512,5)	(702,5)	(750)
<u>50Π W₁₀₀ = 1,391</u>	8,650	18,863	57,403	102,375	144,055	174,955	182,360
08	(-200)	(-152,5)	(37,5)	(275)	(512,5)	(702,5)	(750)
$\frac{100M \text{ W}_{100} = 1,426}{00}$	78,690	84,070	105,325	131,960	158,595	179,905	185,230
	(-50)	(-37,5)	(12,5)	(75)	(137,5)	(187,5)	(200)
$\frac{100M \text{ W}_{100} = 1,428}{14}$	16,280	24,915	59,920	102,140	143,845	177,210	185,550
	(-190)	(-170,5)	(-92,5)	(5,0)	(102,5)	(180,5)	(200)
$100\Pi W_{100} = 1,385$	18,520	38,680	114,575	203,110	285,135	346,055	360,640
	(-200)	(-152,5)	(37,5)	(275)	(512,5)	(702,5)	(750)
$100\Pi W_{100} = 1,391$	17,300	37,725	114,805	204,750	288,110	349,910	364,720
	(-200)	(-152,5)	(37,5)	(275)	(512,5)	(702,5)	(750)
<u>Гр.23</u>	41,711	44,535	55,825	69,930	84,045	95,334	98,156
15	(-50)	(-37,5)	(12,5)	(75)	(137,5)	(187,5)	(200)

Примечания.

6.3.1.3 Рассчитать для каждой контрольной точки основную приведенную погрешность прибора по формуле:

$$\gamma_1 = \frac{T_{\text{\tiny H3M}} - T_{\text{\tiny HCX}}}{T_{\text{\tiny Hopm}}} \times 100 \% , \qquad (1)$$

где γ , – основная приведенная погрешность прибора;

 $T_{_{\text{M3M}}}$ – измеренное прибором значение температуры в заданной контрольной точке;

 T_{HCV} – значение температуры в заданной контрольной точке по HCX термопреобразователя;

 $T_{_{
m hopm}}$ – нормирующее значение, равное разности максимальной и минимальной температур диапазона измерения термопреобразователя.

Рассчитанная для каждой контрольной точки основная приведенная погрешность должна соответствовать п. 1.4 настоящей методики.

В случае невыполнения данного требования провести юстировку прибора в соответствии с указаниями, изложенными в Приложении к руководству по эксплуатации ТРМ138, и вновь повторить работы по определению погрешности. Повторные результаты считать окончательными.

¹⁾ значения температуры по НСХ указаны в скобках;

 $^{^{2)}}$ в числителе – обозначение НСХ термопреобразователя; в знаменателе – значения программируемого параметра **in-t**, определяющего тип НСХ преобразования входного устройства.

6.3.2 Определение основной приведенной погрешности при работе с термопарами

6.3.2.1 К входу поверяемого канала подключить потенциометр постоянного тока ПП-63.

Отключить на уровне **dAt.P** в программируемом параметре **Cj-C** автоматическую коррекцию температуры свободных концов термопар (см. Руководство по эксплуатации TPM138).

Перевести прибор в режим РАБОТА.

6.3.2.2 Последовательно устанавливая на выходе потенциометра ПП-63 напряжения, соответствующие значениям входного сигнала в контрольных точках, приведенные в таблице 4 (для заданной данному входу НСХ), зафиксировать по установившимся показаниям цифрового индикатора ТРМ138 измеренную прибором на поверяемом канале температуру для каждой из этих точек.

Примечание – Для приборов с более узкими диапазонами измерения входных величин (см. п. 1.3) значения контрольных точек таблицы 4 необходимо пересчитать.

Таблица 4
Значение входного сигнала (мВ) и значение температуры по HCX (°C)

Термопары	Контрольные точки измеряемого диапазона, %						
	0	5	25	50	75	95	100
XK (L)	-9,488	-7,831	3,306	22.843	44,709	62,197	66,466
04	(-200)	(-150)	(50)	(300)	(550)	(750)	(800)
<u>ЖК (J)</u>	-7,890	-5,801	8,010	27,393	48,715	65,525	69,553
20	(-200)	(-130)	(150)	(500)	(850)	(1130)	(1200)
HH (N)	-3,990	-2,902	5,098	18,672	33,346	44,773	47,513
19	(-200)	(-125)	(175)	(550)	(925)	(1225)	(1300)
XA (K)	-5,891	-4,276	7,140	22,776	38,323	49,746	52,410
05	(-200)	(-125)	(175)	(550)	(925)	(1225)	(1300)
<u>ПП (S)</u>	0,000	0,552	3,616	8,170	13,305	17,507	18,503
17		(87)	(437)	(875)	(1312)	(1662)	(1750)
<u>ПП (R)</u>	0,000 (0)	0,552	3,795	8,887	14,798	19,705	20,877
18		(87)	(437)	(875)	(1312)	(1662)	(1750)
<u>ПР (В)</u>	0,178	0,372	1,792	4,834	8,956	12,666	13,591
16	(200)	(280)	(600)	(1000)	(1400)	(1720)	(1800)
BP (A-1)	0,000 (0)	1,706	10,028	19,876	27,844	32,654	33,640
21		(125)	(625)	(1250)	(1875)	(2375)	(2500)
BP (A-2)	0,000 (0)	1,191	7,139	14,696	21,478	26,180	27,232
22		(90)	(450)	(900)	(1350)	(1710)	(1800)
BP (A-3)	0,000 (0)	1,034	6,143	12,805	18,981	23,365	24,382
23		(80)	(400)	(800)	(1200)	(1520)	(1600)
MK (T)	-5,603	-5,070	-1,819	4,279	12,013	19,030	20,872
24	(-200)	(-170)	(-50)	(100)	(250)	(370)	(400)

Примечания.

6.3.2.3 Рассчитать по формуле (1) основную приведенную погрешность в каждой контрольной точке. В этом случае температура измеряется без учета компенсации ЭДС свободных концов термопары.

Основная приведенная погрешность, рассчитанная для каждой контрольной точки, должна быть не более $\pm 0.5\,\%$.

В случае невыполнения данного требования провести юстировку прибора в соответствии с указаниями, изложенными в Приложении к руководству по эксплуатации ТРМ138, и вновь повторить работы по определению погрешности. Повторные результаты считать окончательными.

По окончании поверки включить в функциональном параметре **Cj-C** автоматическую коррекцию температуры свободных концов термопар.

¹⁾ значения температуры по НСХ указаны в скобках;

²⁾ в числителе – обозначение HCX термопары; в знаменателе – значения программируемого параметра **in-t** уровня **dAt.P**, определяющего тип HCX преобразования входного устройства.

6.3.2.4 Определить погрешность прибора при измерении температуры при включенной схеме автоматической коррекции температуры свободных концов термопар, для чего выполнить следующие действия.

Подключить к входу прибора вместо потенциометра ПП-63 термопару, соответствующую заданной для данного входа НСХ. Поместить рабочий спай термопары в сосуд Дьюара, заполненный смесью льда с дистиллированной водой (температура смеси 0 °C).

После прогрева в течение примерно 20 минут зафиксировать установившиеся показания прибора на проверяемом канале.

Рассчитать по формуле (1) основную приведенную погрешность прибора. Она должна соответствовать п. 1.4 настоящей методики.

В случае невыполнения данного требования провести юстировку датчика температуры свободных концов термопары в соответствии с указаниями, изложенными в Приложении к руководству по эксплуатации ТРМ138, и вновь повторить работы по определению погрешности. Повторные результаты считать окончательными.

6.3.3 Определение основной приведенной погрешности прибора при измерении входных величин при работе с первичными преобразователями, формирующими выходной сигнал в виде постоянного тока

6.3.3.1 К входу прибора вместо первичного преобразователя подключить прибор В1-12, подготовленный к работе в режиме источника калиброванных токов.

ВНИМАНИЕ! Подключение калибратора тока к входным контактам прибора может осуществляться только после установки на них шунтирующего резистора сопротивлением 100 Ом (с допустимым отклонением не более 0,1%).

Установить для поверяемого канала в программируемом параметре **Ain.L** (нижняя граница измерения первичного преобразователя) значение **«000.0»**, а в параметре **Ain.H** (верхняя граница измерения первичного преобразователя) – значение **«100.0»** (см. руководство по эксплуатации TPM138).

6.3.3.2 Последовательно устанавливая на выходе прибора В1-12 токи, соответствующие значениям входного сигнала в контрольных точках, приведенных в таблице 5 (для заданной данному входу НСХ), зафиксировать по показаниям цифрового индикатора установившиеся значения для каждой из этих точек.

Таблица 5 Значение входного сигнала (мВ) и значение параметра по HCX (%) $^{\scriptscriptstyle{(1)}}$

Датчик ²⁾	Контрольные точки измеряемого диапазона, %						
	0	5	25	50	75	95	100
<u>05 мА</u>	0,000 (0,0)	0,250	1,250	2,500	3,750	4,750	5,000
12		(5,0)	(25,0)	(50,0)	(75,0)	(95,0)	(100,0)
<u>020 мА</u>	0,000 (0,0)	1,000	5,000	10,000	15,000	19,000	20,000
11		(5,0)	(25,0)	(50,0)	(75,0)	(95,0)	(100,0)
<u>420 мА</u>	4,000	4,800	8,000	12,000	16,000	19,200	20,000
10	(0,0)	(5,0)	(25,0)	(50,0)	(75,0)	(95,0)	(100,0)

Примечания.

6.3.3.3 Рассчитать для каждой контрольной точки основную приведенную погрешность по формуле:

$$\gamma_1 = \frac{\Pi_{_{\rm H3M}} - \Pi_{_{\rm HCX}}}{\Pi_{_{\rm HODM}}} \times 100 \%$$
 , (2)

где $\Pi_{_{_{\!\!\mathit{USM}}}}$ — измеренное прибором значение параметра в заданной контрольной точке;

 $\Pi_{_{\mathrm{HCX}}}$ — заданное по HCX значение параметра в контрольной точке;

П_{норм} – нормирующее значение, равное разности между верхней и нижней границей диапазона измерения.

¹⁾ значения температуры по НСХ указаны в скобках;

²⁾ в числителе – обозначение HCX термопреобразователя; в знаменателе – значения программируемого параметра **in-t** уровня **dAt.P**, определяющего тип HCX преобразования входного устройства.

Рассчитанная для каждой контрольной точки основная приведенная погрешность должна соответствовать п. 1.4 настоящей методики.

В случае невыполнения данного требования провести юстировку прибора в соответствии с указаниями, изложенными в Приложении к руководству по эксплуатации ТРМ138, и вновь повторить работы по определению погрешности. Повторные результаты считать окончательными.

6.3.4 Определение основной приведенной погрешности прибора при измерении входных величин при работе с первичными преобразователями, формирующими выходной сигнал в виде напряжения постоянного тока

6.3.4.1 К входу поверяемого канала вместо первичного преобразователя подключить прибор В1-12, подготовленный к работе в режиме источника калиброванных напряжений.

Установить для поверяемого канала в программируемом параметре **Ain.L** (нижняя граница измерения первичного преобразователя) значение **«000.0»**, а в параметре **Ain.H** (верхняя граница измерения первичного преобразователя) – значение **«100.0»** (см. руководство по эксплуатации TPM138).

6.3.4.2 Последовательно устанавливая на приборе В1-12 напряжения, соответствующие значениям входного сигнала в контрольных точках, приведенных в таблице 6 (для заданной данному входу НСХ), зафиксировать по показаниям цифрового индикатора установившиеся значения для каждой из этих точек.

Таблица 6 Значение входного сигнала (мВ) и значение параметра по НСХ (%)¹⁾

Датчик ²⁾	Контрольные точки измеряемого диапазона, %						
	0	5	25	50	75	95	100
01 B	0,0	50,0	250,0	500,0	750,0	950,0	1000,0
13	(0,0)	(5,0)	(25,0)	(50,0)	(75,0)	(95,0)	(100,0)
<u>-50,0+50,0 мВ</u>	-50,00	-45,00	-25,00	0,00	25,00	45,00	50,00
06	(0,0)	(5,0)	(25,0)	(50,0)	(75,0)	(95,0)	(100,0)

Примечания.

6.3.4.3 Рассчитать по формуле (2) основную приведенную погрешность для каждой контрольной точки.

Рассчитанная для каждой контрольной точки основная приведенная погрешность должна соответствовать п. 1.4 настоящей методики.

В случае невыполнения данного требования провести юстировку прибора в соответствии с указаниями, изложенными в приложении к руководству по эксплуатации ТРМ138, и вновь повторить работы по определению погрешности. Повторные результаты считать окончательными.

6.4 Определение основной приведенной погрешности цифроаналоговых измерительных преобразователей (ЦАП) «параметр-ток»

6.4.1 К соответствующему входу прибора подключить один из эталонных источников сигналов, указанных в п. 6.3 (соответствующий заданному для данного входа НСХ). Выход ЦАП подключить к магазину сопротивлений типа P4831, дифференциальному вольтметру В1-12 и встроенному в прибор источнику питания в соответствии со схемой, приведенной на рисунке 1. Установить на магазине сопротивление равное 500,000 Ом.

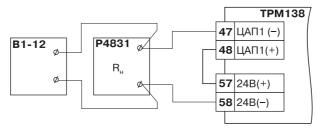


Рисунок 1

¹⁾ значения температуры по НСХ указаны в скобках;

²⁾ в числителе – обозначение НСХ датчика; в знаменателе – значения программируемого параметра **in-t** уровня **dAt.P**, определяющего тип НСХ преобразования входного устройства.

- 6.4.2 В функциональном параметре **Ao.L** (нижняя граница параметра при регистрации) установить для поверяемого ЦАП величину, соответствующую нижнему предельному значению диапазона измерений первичного преобразователя (для заданной данному входу НСХ), а в параметре **Ao.H** (верхняя граница параметра при регистрации) величину, соответствующую верхнему предельному значению диапазона измерений. Величины предельных значений диапазонов измерений приведены в таблицах 3, 4, 5, 6 (контрольные точки 0 % и 100 %).
- 6.4.3 Последовательно задавая входные сигналы такой величины, при которой установившиеся показания цифрового индикатора TPM138 соответствуют значению HCX первичного преобразователя в точках 0, 5, 25, 50, 75, 95, 100 % (см. таблицы 3, 4, 5 или 6), рассчитать выходные токи ЦАП для каждой из контрольных точек по формуле:

$$I_{\text{BMX}} = \frac{U}{R_{\text{H}}},\tag{3}$$

где U – падение напряжения на сопротивлении нагрузки $R_{_{\rm H}}$, контролируемое вольтметром B1-12, B;

 $R_{_{\parallel}} - 500,000 \, \text{Ом} - \text{сопротивление нагрузки ЦАП}.$

Значения выходных токов по НСХ ЦАП для вышеуказанных контрольных точек приведены в таблице 7.

Таблица 7

Контрольные точки измеряемого диапазона, %	0	5	25	50	75	95	100
Выходной сигнал цифро- аналогового преобразова- теля по НСХ, мА	4,00	4,80	8,00	12,00	16,00	19,20	20,00

6.4.4 Основную приведенную погрешность измерительного ЦАП для каждой контрольной точки рассчитать по формуле:

$$\gamma_3 = \frac{A_{\text{изм}} - A_{\text{pacy}}}{A_{\text{HODM}}} \times 100 \% , \qquad (4)$$

где γ_2 — основная приведенная погрешность измерительного ЦАП;

A_{изм} – рассчитанное по формуле (3) значение выходного тока ЦАП, мА;

А значение выходного сигнала преобразователя по НСХ (таблица 7), мА;

A_{норм} – нормирующее значение сигнала (16 мА).

Рассчитанная для каждой контрольной точки основная приведенная погрешность ЦАП должна соответствовать п. 1.5 настоящей методики.

В случае невыполнения данного требования провести юстировку ЦАП в соответствии с указаниями, изложенными в Приложении к руководству по эксплуатации ТРМ138, и вновь повторить работы по определению погрешности. Повторные результаты считать окончательными.

7 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 7.1 Результаты поверки оформляют протоколом по форме, установленной метрологической службой, проводящей поверку.
 - 7.2 При отрицательных результатах поверки приборы не допускают к эксплуатации.

ССЫЛОЧНЫЕ НОРМАТИВНЫЕ ДОКУМЕНТЫ

Обозначение документа, на который дана ссылка	Номер раздела, подраздела, в котором дана ссылка
ГОСТ 6651-94	1.3
ГОСТ 6651-78	1.3
ГОСТ Р 8.585–2001	1.3
ГОСТ 26.011-80	1.3
ГОСТ 23737-79	3.1
ГОСТ 9245-79	3.1
ГОСТ 22261	3.1
ГОСТ 12.2.007.0-75	4
ГОСТ 12.3.019-80	4.2