

ПЛК160(М02)

Программируемый логический контроллер

Руководство по эксплуатации

Содержание

Предупреждающие сообщения	
Введение	4
Используемые термины и сокращения	5
1 Назначение	
2 Технические характеристики и условия эксплуатации	
2.1 Технические характеристики	
2.2 Изоляция узлов прибора	
2.3 Условия эксплуатации	
2.4 Помехоустойчивость и помехоэмиссия	14
3 Устройство и особенности конструкции	15
3.1 Конструкция	
3.2 Цифровые входы	
3.3 Цифровые выходы	
3.4 Аналоговые входы	
3.5 Аналоговые выходы	
3.6 Индикация	
3.7 Переключатель работа/стоп/сброс	
3.8 USB-Host	
3.9 USB-Device	
3.10 RS-232	
3.11 Ethernet	
3.12 RS-232 Debug	
3.13 Часы реального времени	
3.14 Батарея	
4 Меры безопасности	
5 Монтаж	
5.1 Установка контроллера	
5.2 Установка на DIN-рейке	
5.3 Установка на стену	24
6 Подключение	25
6.1 Рекомендации по подключению	25
6.2 Подключение питания	25
6.3 Подключение входов и выходов	26
6.4 Подключение устройств к ПЛК160(M02)	28
7 Использование по назначению	32
8 Эксплуатация	
8.1 Время реакции входов/выходов	
8.2 Пробный пуск	
9 Техническое обслуживание	
•	
10 Маркировка	
11 Упаковка	
12 Транспортирование и хранение	37
13 Комплектность	38
14 Гарантийные обязательства	39

Предупреждающие сообщения

В данном руководстве применяются следующие предупреждения:

ОПАСНОСТЬ

Ключевое слово ОПАСНОСТЬ сообщает о **непосредственной угрозе опасной ситуации**, которая приведет к смерти или серьезной травме, если ее не предотвратить.

ВНИМАНИЕ

Ключевое слово ВНИМАНИЕ сообщает о **потенциально опасной ситуации**, которая может привести к небольшим травмам.

ПРЕДУПРЕЖДЕНИЕ

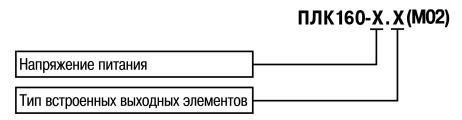
Ключевое слово ПРЕДУПРЕЖДЕНИЕ сообщает о **потенциально опасной ситуации**, которая может привести к повреждению имущества.

ПРИМЕЧАНИЕ

Ключевое слово ПРИМЕЧАНИЕ обращает внимание на полезные советы и рекомендации, а также информацию для эффективной и безаварийной работы оборудования.

Ограничение ответственности

Ни при каких обстоятельствах ООО «Производственное объединение OBEH» и его контрагенты не будут нести юридическую ответственность и не будут признавать за собой какие-либо обязательства в связи с любым ущербом, возникшим в результате установки или использования прибора с нарушением действующей нормативно-технической документации.


Введение

Настоящее Руководство по эксплуатации предназначено для ознакомления обслуживающего персонала с устройством, конструкцией, работой и техническим обслуживанием программируемого логического контроллера ПЛК160 (М02) (в дальнейшем по тексту именуемого «прибор» или «контроллер ПЛК160(М02)»).

Прибор зарегистрирован в Государственном реестре средств измерений, свидетельство RU.C.34.004A №45041.

Прибор выпускается согласно ТУ 4252-003-46526536-2008 и имеет декларацию соответствия ТР ТС.

Контроллер ПЛК160 (М02) изготавливается в различных модификациях, зашифрованных в коде полного условного обозначения:

Напряжение питания:

220 – номинальное напряжение питания 120/230 В переменного тока;

24 – номинальное напряжение питания 24 В постоянного тока.

Тип встроенного выходного элемента:

И – ток от 4 до 20 мА;

У – напряжение от 0 до 10 В;

A – универсальные, ток от 4 до 20 мА, напряжение от 0 до 10 В.

ПРЕДУПРЕЖДЕНИЕ

Для всех модификаций контроллера размер памяти области ввода-вывода составляет 25 кбайт.

Пример записи обозначения контроллера в документации другой продукции, где он может быть применен:

Программируемый контроллер ПЛК160-24.И(М02)

Изготовлению и поставке подлежит программируемый логический контроллер с номинальным напряжением питания 24 В, с типом встроенного выходного элемента – ток от 4 до 20 мА.

Подключение, регулировка и техническое обслуживание контроллера должны производиться только квалифицированными специалистами, изучившими настоящее Руководство по эксплуатации.

Используемые термины и сокращения

CODESYS (Controllers Development System) – программное обеспечение, специализированная среда программирования логических контроллеров. Торговая марка компании 3S-Smart Software Solutions GmbH.

DCON – открытый протокол обмена по сети RS-485, разработан компанией Advantech, применяется в модулях ввода/вывода Adam, модулях компании IPC DAS и др.

Modbus – открытый протокол обмена по сети RS-485, разработан компанией ModiCon, в настоящий момент поддерживается независимой организацией Modbus-IDA (www.modbus.org).

Modbus-TCP – версия протокола Modbus, адаптированная к работе в сети TCP/IP.

Retain-переменные – переменные пользовательской программы, значение которых сохраняется в случае выключения питания контроллера.

Retain-память – энергонезависимая память для хранения значений Retain-переменных пользовательской программы.

ОЗУ – оперативное запоминающее устройство, оперативная память.

ОС – операционная система.

ПЛК – программируемый логический контроллер.

Пользовательская программа – программа, созданная в среде CODESYS пользователем контроллера (или лицом, производящим его начальное программирование).

ПО – программное обеспечение.

ПК – персональный компьютер.

РП – руководство пользователя «Программирование программируемых логических контроллеров ОВЕН ПЛК160(M02)».

ШИМ – широтно-импульсная модуляция.

Категория используемой нагрузки (по ГОСТ ІЕС 60947-1-2014) для типичной области применения:

- DC-13 для постоянного тока: управление электромагнитами постоянного тока;
- АС-15 для переменного тока: управление электромагнитными нагрузками.

1 Назначение

Контроллер предназначен для использования в составе различных автоматизированных систем контроля и управления на промышленных предприятиях.

Контроллер может управлять:

- выделенными локальными объектами;
- локальным объектом в составе комплексной информационной сети;
- и контролировать группу локальных объектов в составе комплексной информационной сети.

Контроллер может быть применен на промышленных объектах, подконтрольных ФСЭТАН.

Логика работы прибора программируется с помощью CODESYS v 2.3. Поддерживаются все языки программирования стандарта МЭК 61131-3:

- LD: Релейно-контакторные схемы;
- FBD: Функциональные блоковые диаграммы;
- SFC: Последовательные функциональные диаграммы;
- ST: Структурированный текст;
- IL: Список инструкций.

Документация по программированию контроллера и работе с CODESYS приведена на сайте www. owen.ru.

2 Технические характеристики и условия эксплуатации

2.1 Технические характеристики

Основные технические характеристики контроллера представлены в таблице 2.1 и в таблице 2.2.

Таблица 2.1 – Общие технические характеристики

Параметр	Значение (свойства)		
параметр	ПЛК160-Х.А	ПЛК160-Х.У	ПЛК160-Х.И
	Питание		
Напряжение питания:			
ПЛК160-24.Х(М02)	от 9 до 30 В постоянного тока при T > минус 20 °C		
	от 9 до 26 В постоянного тока при минус 40 °C > T > минус 20 °C (номинальное 12 или 24 В)		
ПЛК160-220.Х(М02)	от 90 до 264 В переме частотой от 47 до 63 Г		
Потребляемая мощность, не более		45 BA	
Пусковой ток, не более:			
при напряжении 90 В		10 A	
при напряжении 230 В		44 A	
при напряжении 264 В		54 A	
Длительность переходного процесса, не более:			
при напряжении 90 В		3 мс	
при напряжении 230 В		2 мс	
при напряжении 264 В		2 мс	
Выходное напряжение встроенного источника питания:			
для исполнения 220 В	24 ± 3 В, ток потребления не более 400 мА		
для исполнения 24 В	пропорционально	напряжению источник	а питания прибора
1	Цифровые (дискретн ы	ые) входы	
Количество входов		16	
из них быстродействующих		4 (DI1-DI4)	
Тип входов по ГОСТ Р 52931-2008		1и2	
Напряжение питания дискретных входов		24 ± 3 B	
Максимальный входной ток дискретного входа, не более:		7 мА при питании 24 В 3,5 мА при питании 27 I	
Сигнал «логической единицы», соответствующий состоянию «Включено», дискретных входов для постоянного напряжения, (ток в цепи)	от 15	5 до 30 В (ток от 3 до 15	5 мA)
Сигнал «логического нуля», соответствующий состоянию «Выключено», дискретных входов для постоянного напряжения, (ток в цепи)			5 мА)
Минимальная длительность импульса, воспринимаемого дискретным входом			
для обычных входов		1 мс	
для быстродействующих		0,02 мс	

Продолжение таблицы 2.1

Параметр	Значение (свойства)		
Параметр	ПЛК160-Х.А	ПЛК160-Х.У	ПЛК160-Х.И
Подключаемые входные устройства	коммутационные устройства (контакты кнопок, выключателей, герконов, реле и т. п.) датчики, имеющие на выходе транзистор n-p-n или p-n-p типа с открытым коллектором дискретные сигналы 24 ± 3 В		
Дискретные	•	ектромагнитных реле)	
Количество релейных выходных каналов	·	12	
Максимальный ток, коммутируемый контактами реле, не более	и cos ♥ > 0,4 – нагр по 3 А (для постоянного	напряжения не более 2 узка для категории испо ГОСТ IEC 60947-1-2014 о напряжения не более 3 ования DC-13 по ГОСТ I	ользования АС-15 l) 30 В – нагрузка для
Время переключения контактов реле из состояния «лог. 0» в «лог. 1» и обратно, не более	50) мс (выходы DO1-DO12)
Механический ресурс реле, не менее:	500 000 циклов пере	лючений при максималь нагрузке еключений при коммутаь ловины от максимально	ции нагрузки менее
	Аналоговые вхо	оды	
Количество аналоговых входов		8	
Тип поддерживаемых унифицированных сигналов	Ток от 0 (4) до 20 мА Ток от 0 до 5 мА Напряжение от 0 до 10 В		
Разрядность АЦП		14 бит	
Входное сопротивление, не более:			
В режиме измерения тока В режиме измерения напряжения, не менее:		170 Ом 200 кОм	
Период опроса одного входа		10 мс	
Предел основной приведенной погрешности преобразования		± 0,25 %	
Предел дополнительной приведенной погрешности преобразования на каждые 10 градусов изменения температуры		± 0,05 %	
	Аналоговые вых	оды	
Количество аналоговых выходов		4	
Тип выходного сигнала	Универсальный, ток от 4 до 20 мА, напряжение от 0 до 10 В	Напряжение от 0 до 10 В	Ток от 4 до 20 мА
Предел основной приведенной погрешности ЦАП	± 0,5 %		
Разрядность ЦАП (бит)	12 10 10		
Минимальный период обновления выходов	100 мс		
Питание аналоговых выходов, внешнее	(24 ± 3 B)		

Продолжение таблицы 2.1

Папацотп	Значение (свойства)			
Параметр	ПЛК160-Х.А ПЛК160-Х.У ПЛК160-Х.			
Предел допускаемой дополнительной приведенной погрешности аналоговых выходов, вызванной изменением температуры окружающего воздуха от нормальной на каждые 10 °C изменения температуры	не более 0,5 предела допускаемой основной приведенной погрешности аналоговых выходов			
	Вычислительные р	есурсы		
Центральный процессор	RISC-процес	cop Texas Instruments S	Sitara AM1808	
Объем оперативной памяти	Данные пол Неар до 4 Мб в завис	овательская программ пьзовательской програг симости от использован фигурация и др.) (SDR RAM-диск 8 Мб	ммы 128 Кб ния ресурсов (сокеты,	
Объем энергонезависимой памяти (FLASH)	6 Мб доступ	но для хранения файло	ов и архивов	
Размер Retain-памяти (MRAM)		16 Кб		
Количество сокетов		30		
Время выполнения пустого цикла	Установленное по умолчанию (стабилизированное) – 1 мс (настраивается в окне «Конфигурация ПЛК (PLC Configuration) CODESYS. Настоятельно не рекомендуется устанавливать врем цикла равное 0 мс		(PLC Configuration)	
	Встроенное оборуд	ование		
Часы реального времени с собственным батарейным питанием погрешность хода, не более:				
при температуре плюс 25 °C		5 секунд в сутки		
при температуре минус 40 °C		20 секунд в сутки		
Встроенный источник выдачи звукс	вого сигнала			
Трехпозиционный переключатель н	на передней панели кон	нтроллера		
	Заводские сетевые н	астройки		
ІР-адрес		10.0.6.10		
Маска ІР-адреса		255.255.255.0		
IP-адрес шлюза		10.0.6.1		
DNS		8.8.8.8; 8.8.4.4		
	Общие сведен	Р		
Габаритные размеры, не более		$(208 \times 110 \times 83) \pm 1 \text{ MM}$		
Масса, не более		1,2 кг		
Степень защиты корпуса по ГОСТ 14254–96	IP20 со сторон передней панели, IP00 со стороны клемм		о стороны клемм	
Индикация на передней панели	Светодиодная			
Средняя наработка на отказ*	60 000 ฯ			
Средний срок службы	8 лет			
* не считая электромеханических п времени.	ереключателей и элем	ента питания часов реа	ально реального	

Таблица 2.2 – Интерфейсы связи и программирования

	Протоков				
Интерфейсы связи	Протоколы (тип связи и особенности работы)	Формат передачи данных	Скорости передачи*	Длина кабеля**, не более	Тип рекомендуемого кабеля
RS-485	ModBus-RTU, ModBus-ASCII, DCON, OBEH	7 или 8 бит, четность есть /нет/не используется, 1 или 2 стоп бита	300, 600, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 115200 бит/с	1000 м	КИПЭВ 1 × 2 × 0,6 ТУ 16.К99-008–2001 или аналогичный
RS-232	ModBus-RTU, ModBus-ASCII, DCON, OBEH	7 или 8 бит, четность есть /нет/не используется, 1 или 2 стоп бита	300, 600, 1200,1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 115200 бит/с	3 м	Кабели, выполненные в соответствии с рекомендациями раздела 6.4
RS-232 Debug	ModBus-RTU (только slave), ModBus-ASCII, DCON, GateWay (только для Debug RS- 232), OBEH	только 8 бит, нет 1	300, 600, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 115200 бит/с	1,8 м	Кабели, выполненные в соответствии с рекомендациями раздела 6.4
Ethernet 100 Base-T	ModBus-TCP, Gateway, TCP-IP, UDP-IP, CODESYS Network Variables (over UDP), PPP	-	10, 100 Мбит/с	100 м	Категория 5 тип UTP (витые пары без экрана), STP или FTP (витые пары в экране)
USB-Device	CDC	-	115200 бит/с	2 м	-
USB-Host	MSD/HID/FTDI, USB 1.0/1.1	-	-	1,5 м	- A 0/ 5

^{*} Критерий правильного функционирования интерфейсов связи контроллера – не более 1 % ошибок на любой из скоростей.

Интерфейсы USB и RS-232 прибора питают подключенные устройства. Ток потребления питаемых устройств не должен превышать значений, указанных в таблице.

Таблица 2.3 - Ток потребления интерфейсов

Интерфейс	Максимальный ток питания подключаемых устройств
RS-232-Debug	до 250 мА*
RS-232	- 40 200 MA
USB-Host	до 150 мА

ПРЕДУПРЕЖДЕНИЕ

* Допускается подключение линии питания только для одного из интерфейсов: либо RS-232, либо RS-232 Debug.

^{**} Максимальная длина зависит от скорости обмена.

2.2 Изоляция узлов прибора

Типы изоляции представлены в таблице 2.4

Таблица 2.4 – Типы изоляции

Тип	Описание
Основная изоляция (О)	Изоляция для частей оборудования, находящихся под напряжением, с целью защиты от поражения электрическим током. Электрическая прочность основной изоляции прибора проверяется типовыми испытаниями: приложением испытательного переменного напряжения, величина которого различна для различных цепей прибора
Дополнительная (Д)	Независимая изоляция, в дополнение к основной изоляции для гарантии защиты от поражения электрическим током в случае отказа основной изоляции. Электрическая прочность дополнительной изоляции прибора проверяется типовыми испытаниями проверке приложением испытательного переменного напряжения различной величины (действующее значение)
Двойная изоляция	Включает основную и дополнительные изоляции
Усиленная (У)	Отдельная система изоляции для частей под напряжением со степенью защиты от поражения электрическим током, эквивалентную двойной изоляции согласно ГОСТ IEC 61131-2. Электрическая прочность усиленной изоляции прибора проверяется типовыми испытаниями: приложением испытательного переменного напряжения 3000 В (действующее значение)
Функциональная (Ф)	Изоляция для исправной работы оборудования. Не обеспечивает защиту от поражения электрическим током. Электрическая прочность функциональной изоляции прибора проверяется типовыми испытаниями: приложением испытательного переменного напряжения 1000 В (действующее значение)

Схема прочности гальванической изоляции для контроллера ПЛК160(М02) приведена на рисунке 2.1.

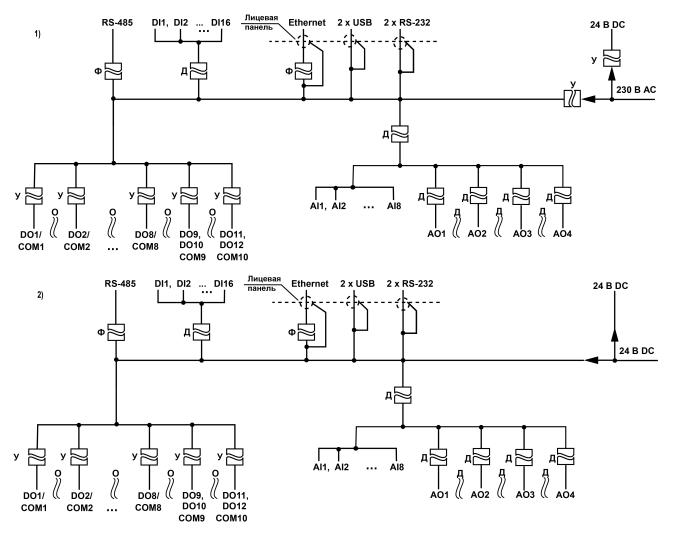


Рисунок 2.1 – Схема электрической прочности изоляции ПЛК160-220.X(M02) (1) и ПЛК160-24.X (M02) (2)

ПРИМЕЧАНИЕ Время испытания - 1 минута.

Таблица 2.5 – Прочность гальванической изоляции

Параметр	Значение (свойства)					
	Встроенный источник питания					
Тип источника питания	ПЛК160-24.Х(М02)	ПЛК160-220.Х(М02)				
Гальваниче- ская развязка	Отсутствует	Есть				
Электриче- ская прочность изоляции	Отсутствует	3000 B (У)				
	Цифровые (дискретные) входы					
Гальваниче- ская развязка	ская					
Электриче- ская прочность изоляции	1780 В (Д)					

Продолжение таблицы 2.5

Параметр	Значение (свойства)						
	l	Встроен	ный источник	питания			
	Дискре	тные выходы	(контакты эле	ктромагнитнь	іх реле)		
Гальваниче- ская	Индивидуальная или групповая (часть входов объединены в группу по 2 шт. и имеют общую клемму (см. схему изоляции)				? шт. и имеют		
развязка	Между гр	уппами осталы	ных цепей	Между выход	ами (или групп	ами выходов)	
Электриче- ская прочность изоляции	3000 B (У) 1780 B (О)						
		Ан	алоговые вхо	<u>.</u> ДЫ			
Гальваниче- ская развязка		Групповая	я (все входы об	ъединены в од	ну группу)		
Электриче- ская прочность изоляции	- 560 B (Д)						
		Ана	логовые вых	оды			
Гальваниче-			Индивид	цуальная			
ская развязка	Между гр	уппами осталы	ных цепей	N	1ежду выходам	И	
Электриче- ская прочность изоляции		1780 В (Д)		1780 В (Д)			
		Ин	терфейсы свя	13И			
Интерфейс	RS-485	RS-232	RS-232- Debug	Ethernet 100 USB-Device USB-Host			
Гальваниче- ская развязка	Индиви- дуальная	Отсутствует	Отсутствует	Индиви- дуальная	Отсутствует	Отсутствует	
Электриче- ская прочность изоляции	3000 В (Ф)	-	-	1500 B (O)	-	-	

2.3 Условия эксплуатации

Прибор соответствует требованиям условий эксплуатации ГОСТ IEC 61131-2-2012.

Прибор соответствует второму классу электробезопасности в соответствии с ГОСТ IEC 61131-2-2012.

Прибор предназначен для эксплуатации в следующих условиях:

- закрытые взрывобезопасные помещения или шкафы электрооборудования без агрессивных паров и газов;
- температура окружающего воздуха от минус 40 до плюс 55 °C;
- относительная влажность от 10 % до 95 % при плюс 35 °С (без образования конденсации);
- высота над уровнем моря не более 2000 м;
- допустимая степень загрязнения 1 (несущественные загрязнения или наличие только сухих непроводящих загрязнений).

По устойчивости к климатическим воздействиям во время эксплуатации прибор соответствует группе исполнения В4 ГОСТ Р 52931-2008.

По устойчивости к механическим воздействиям при эксплуатации прибор соответствует группе исполнения N2 ГОСТ Р 52931-2008 (частота вибрации от 10 до 55 Гц).

По устойчивости к воспламенению и распространению пламени FV1 корпус прибора соответствует ГОСТ Р 51841-2001.

2.4 Помехоустойчивость и помехоэмиссия

Прибор отвечает требованиям по устойчивости к воздействию помех в соответствии с ГОСТ IEC 61131–2–2012.

По уровню излучения радиопомех (помехоэмиссии) контроллер соответствует нормам, установленным для оборудования класса Б по ГОСТ 30805.22–2013.

Прибор устойчив к колебаниям и провалам напряжения питания:

- для переменного тока в соответствии с требованиями ГОСТ 30804.4.11-2013;
- для постоянного тока в соответствии с ГОСТ IEC 61131-2–2012 длительность прерывания до 10 мс включительно, длительность интервала от 1 с и более.

По устойчивости к электромагнитным воздействиям и по уровню излучаемых радиопомех прибор соответствует оборудованию класса А по ГОСТ 51522—1999 (МЭК 61326-1).

Прибор устойчив к воздушному электростатическому разряду ± 8 кВ.

Прибор устойчив к радиочастотному электромагнитному полю напряженностью до 10 В/м в полосе частот от 80 до 1000 МГц.

3 Устройство и особенности конструкции

3.1 Конструкция

Контроллер ПЛК160 (M02) выпускается в конструктивном исполнении для крепления на DIN-рейке 35 мм или на стену.

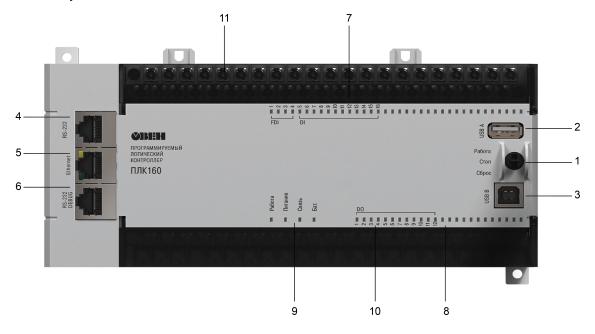


Рисунок 3.1 – Внешний вид ПЛК160(М02)

Таблица 3.1 - Описание интерфейсов

Nº	No. Housevery				
	Наименование	Описание			
1	Переключатель работа/стоп/сброс	Трехпозиционный переключатель (см. подраздел 3.7)			
2	USB-Host (Разъем USB Туре-А)	Порт для подключения USB-flash накопителей (см. подраздел 3.8)			
3	USB-Device (Разъем USB Туре-В)	Порт для программирования (см. подраздел 3.9)			
4	RS-232 (Разъем RJ-45)	Последовательный интерфейс для подключения устройств (см. подраздел 3.10)			
5	Ethernet (Разъем RJ-45)	Порт Ethernet 100 Base-Т предназначен для подключения ПЛК в локальные сети, передачи данных и программирования (см. подраздел 3.11)			
6	RS-232 Debug (Разъем RJ-45)	Последовательный интерфейс предназначен для подключения устройств и программирования: (см. подраздел 3.12)			
7	Светодиодные индикаторы состояния входов	FDI – обозначение для быстрых входов контроллера; DI – обычные дискретные входы (см. подраздел 3.2)			
8	Светодиодные индикаторы состояния выходов	DO – обычные дискретные выходы (см. подраздел 3.3)			
9	Светодиодные индикаторы состояния	Индикация состояния контроллера: «Работа», «Питание», «Связь», «Батарея» (см. подраздел 3.6)			
10	Съемные клеммные колодки	Для подключения питания прибора, дискретных датчиков, исполнительных механизмов, аналоговых входов и выходов, интерфейсов RS-485 и клеммы встроенного источника постоянного напряжения 24 В			

3.2 Цифровые входы

Прибор имеет 16 цифровых (дискретных) входов. Обработка значений с входов осуществляется пользовательской программой контроллера.

Входы DI1–DI4 могут быть запрограммированы на работу в качестве счетчиков импульсов, на работу с энкодерами, или переведены в режим обработки по прерыванию высокочастотного таймера. Максимальные частоты входных сигналов, которые могут воспринимать эти входы, приведены в таблице 3.2.

Таблица 3.2 - Максимальные частоты входных сигналов

Режим работы дискретного входа	Минимальная длительность импульса, воспринимаемого дискретным входом	Комментарий
Программная обработка	1667 мкс (300 Гц)	Определяется длительностью цикла прибора
Счетчик импульсов	5 мкс (100 кГц)	При коэффициенте заполнения 0,5 (50 %) и отключенном фильтре
Энкодер	5 мкс (до 100 кГц*)	При коэффициенте заполнения 0,5 (50 %) и отключенном фильтре
Чтение из прерывания по высокочастотному таймеру	31 мкс (до 16 кГц)	До 8 кГц в режиме энкодера

ПРЕДУПРЕЖДЕНИЕ

Все «быстродействующие» входы объединяются в общую группу и одновременно работают в одном из перечисленных режимов в таблице 3.3.

Таблица 3.3 - Режимы работы входов

Модификация	Режимы	Энкодер	Входы
	Подключение двух	Первый	DI1-DI2
	энкодеров	Второй	DI3-DI4
ПЛК160-Х.60(М02)	Подключение одного	Первый или второй	DI1-DI2
	энкодера с указателем нулевой метки (ABZ энкодер)	Указатель нулевой метки	DI3

3.3 Цифровые выходы

Прибор имеет 12 цифровых (дискретных) выходов. Выходы управляются пользовательской программой ПЛК.

Выходы DO1-DO4 могут быть запрограммированы на работу в качестве генераторов ШИМ.

3.4 Аналоговые входы

Прибор имеет 8 аналоговых входов. Значения с входов обрабатываются пользовательской программой. Входы настраиваются независимо друг от друга на работу в одном из следующих режимов:

- измерение тока от 4 до 20 мА;
- измерение тока от 0 до 20 мА;
- измерение тока от 0 до 5 мА;
- измерение напряжения от 0 до 10 В.

Период обновления результатов измерения по каждому входу равен 10 мс.

Результаты измерения каждого канала могут быть независимо отфильтрованы с помощью цифровых фильтров. Более подробные сведения о настройке аналоговых входов изложены в РП.

3.5 Аналоговые выходы

Прибор имеет 4 аналоговых выхода. Тип аналоговых выходов зависит от исполнения прибора.

^{*} Частота на контактах энкодера А, В и Z.

3.6 Индикация

Светодиодная индикация на передней панели контроллера отображает:

- состояние дискретных входов и выходов;
- наличие питания;
- наличие связи с CODESYS v 2.3;
- работу контроллера.

Таблица 3.4 – Описание индикации

Индикатор	Состояние индикатора	Описание	
	Слабо светится	Ядро ОС еще не загрузилось после включения питані контроллера	
	Мигает раз в 500 мс	Ядро ОС повреждено (не совпадает контрольная сумма)	
«Работа»	Мигает раз в 200 мс	Перегрузка центрального процессора	
	Светится	Ядро ОС загружено успешно, программа CODESYS загрузилась и запустилась	
	Не светится	Программа CODESYS не работает, остановлена или в загружена	
«Питание»	Светится	Наличие питания у контроллера	
	Не светится	Отсутствие питания у контроллера	
0	Светится	Наличие связи с CODESYS	
«Связь»	Не светится	Отсутствие связи с CODESYS	
«Бат.»	Светится	Необходимо заменить батарейку (порядок замены см. подраздел 3.14)	
	Не светится	Батарейка не требует замены	
EDI DI	Светится	Соответствующий вход замкнут	
«FDI», «DI»	Не светится	Вход разомкнут	
DO	Светится	Соответствующий выход замкнут	
«DO»	Не светится	Выход разомкнут	

В корпусе контроллера расположен маломощный звуковой излучатель. Во время работы пользовательской программы звуковой излучатель может использоваться как дискретный выход, (см. РП). Излучатель может быть использован, например, для аварийной сигнализации или во время отладки программы. Частота и громкость звукового сигнала фиксированы и не подлежат изменению.

3.7 Переключатель работа/стоп/сброс

На передней панели прибора около порта интерфейса USB В расположен трехпозиционный переключатель.

Положения переключателя определяют состояния прибора, описанные в таблице 3.5

Таблица 3.5 - Положения переключателя

Положение переключателя	Состояние прибора	Описание
Перевод в верхнее положение «Работа»	Во включенном состоянии	Пользовательская программа не запустится
	До включения	Со стартом контроллера запустится пользовательская программа, если она настроена на автозапуск*
Перевод в среднее положение «Стоп»	Во включенном состоянии	Пользовательская программа не будет остановлена
Перевод в среднее положение «Стоп»	До включения	Во время старта прибора пользовательская программа не будет загружена в ОЗУ контроллера и запущена
Перевод в нижнее (нефиксируемое)	Во включенном состоянии	Через 6 секунд удержания произойдет перезагрузка прибора
положение «Сброс»	В отключенном состоянии	Ничего не произойдет

ПРЕДУПРЕЖДЕНИЕ

* Прибор заранее был подключен к CODESYS, и создан загрузочный проект: CODESYS | Онлайн | Создание загрузочного проекта.

3.8 USB-Host

На лицевой части прибора расположен интерфейс USB-Host для подключения устройства хранения информации USB Mass Storage Device (MSD), USB HUB и HID устройства.

Во время работы с интерфейсом USB-Host следует учитывать следующие особенности:

- USB-Host имеет функцию защиты от перегрузки и короткого замыкания. Срабатывание защиты приводит к выключению питания на USB-Host с последующими периодическими попытками восстановления питания;
- максимальный размер памяти USB MSD не должен превышать 8 GB;
- прибор не поддерживает USB MSD в формате NTFS. Необходимо отформатировать USB MSD в формат FAT12, FAT16 или FAT32.

ПРЕДУПРЕЖДЕНИЕ

Рекомендуется использование файловой системы FAT32.

Для безопасного извлечения накопителя следует:

- 1. Завершить все процедуры записи.
- 2. Дождаться прекращения активности на накопителе (светится индикатор) или выждать не менее 3 секунд.
- 3. Извлечь накопитель.

ВНИМАНИЕ

Несоблюдение рекомендаций по безопасному извлечению накопителей может привести к потере данных.

3.9 USB-Device

Прибор подключается к ПК через порт USB-Device кабелем USB A-USB В (в комплект поставки не входит). Длина кабеля не должна превышать 1,8 м.

ВНИМАНИЕ

После программирования прибора, кабель интерфейса USB-Device следует отключить. Не допускается эксплуатация прибора с подключенным кабелем. Для связи прибора с ПК рекомендуется использовать интерфейс Ethernet.

Руководство по подключению к CODESYS v2.3 подробно описано в РП.

3.10 RS-232

Прибор содержит один интерфейс RS-232 для связи двух последовательных устройств по протоколу Modbus RTU/ASCII. В приборе поддерживаются режимы Master и Slave.

Распиновка порта RS-232 представлена на рисунке 3.2 и описана в таблице 3.6.

Рисунок 3.2 – Распиновка порта RS-232

Таблица 3.6 - Описание распиновки порта RS-232

№ pin	Описание
1	-
2	-
3	GND
4	-

Продолжение таблицы 3.6

Nº pin	Описание	
5	+5 Vdc, 250 mA	
6	-	
7	RX	
8	TX	

ВНИМАНИЕ

Подключение производить при отключенном напряжении питания всех устройств сети RS-232. Если данное условие не может быть выполнено, то необходимо отключить питание одного из этих устройств.

ПРЕДУПРЕЖДЕНИЕ

Длина линии связи не более 3 м.

Порт имеет вывод 5 В и позволяет питать подключенные устройства током с силой не более 250 мА. Допускается подключение линии питания только для одного из интерфейсов RS-232, или RS-232 Debug.

3.11 Ethernet

Контроллер оснащён коммуникационным портом Ethernet 100 Base-T, который обеспечивает сетевое взаимодействие контроллера с другими устройствами.

Распиновка порта Ethernet представлена на рисунке 3.3 и описана в таблице 3.7.

Рисунок 3.3 – Распиновка порта Ethernet

Таблица 3.7 – Описание распиновки порта Ethernet

№ pin	Описание
1	TD+
2	TD-
3	RD+
4	-
5	-
6	RD-
7	-
8	-

|ПРЕДУПРЕЖДЕНИЕ

Порт Ethernet может использоваться для подключения к CODESYS v2.3 (см. РП).

На рисунке 3.3 показан индикатор состояния разъема RJ-45 интерфейса Ethernet. Описание индикации в таблице 3.8

Таблица 3.8 – Описание индикации

Цвет	Светодиод			
	Описание	Статус	Описание	
Желтый	Передача данных	Выкл.	Нет активности	
		Вкл.	Передача или получение данных	
Зеленый	Соединение	Выкл.	Нет соединения или соединение 10 Мбит/с	
		Вкл.	Соединение 100 Мбит	

3.12 RS-232 Debug

Контроллер содержит один интерфейс RS-232 Debug, который может быть использован для подключения контроллера к ПК и для связи двух последовательных устройств по протоколу Modbus RTU (только режим Slave) и Modbus ASCII (поддерживается как режим Master, так и Slave).

Распиновка порта RS-232 Debug представлена на рисунке 3.4 и описана в таблице 3.9.

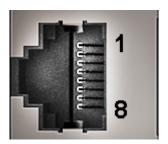


Рисунок 3.4 - Распиновка порта RS-232 Debug

Таблица 3.9 - Описание распиновки порта RS-232 Debug

№ pin	Описание
1	-
2	-
3	GND
4	-
5	+5 В, 250 мА
6	-
7	RX
8	TX

ВНИМАНИЕ

Подключение производить во время отключенного напряжения питания всех устройств сети RS-485. Если данное условие не может быть выполнено, то необходимо отключить питание одного из этих устройств.

ПРЕДУПРЕЖДЕНИЕ

Длина линии связи не более 3 м.

Порт имеет вывод 5 В и позволяет осуществить питание подключенных устройств, ток не более 250 мА. Допускается подключение линии питания только для одного из интерфейсов RS-232, или RS-232 Debug.

Порт RS-232 Debug может использоваться для подключения к CODESYS v2.3 (см. РП).

3.13 Часы реального времени

Прибор оснащен встроенными часами реального времени (RTC), которые могут питаться от батареи. Энергии полностью заряженной батареи хватает на непрерывную работу часов реального времени в течение 5 лет. В случае эксплуатации контроллера при температуре на границах рабочего диапазона время работы часов сокращается.

3.14 Батарея

В приборе используется сменная батарея типа CR2032. Батарея используется только для питания часов реального времени. В случае отключения питания контроллер сохраняет промежуточные результаты вычислений и выключается.

Если батарея разряжена (напряжение в ней опускается ниже определенного значения), то включается индикатор разряда батареи (светодиод «Бат.» на лицевой стороне прибора). Включение индикатора сигнализирует о необходимости замены батареи (см. раздел 3.6).

Для замены батареи следует:

- 1. Отключить питание прибора и подключенных к нему устройств.
- 2. Поднять прозрачную крышку 1 над клеммной колодкой 2.
- 3. Выкрутить два винта 3.
- 4. Зацепить колодку отверткой и снять ее как показано на стрелке 4.

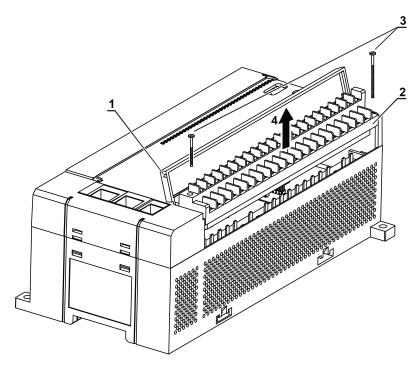


Рисунок 3.5 - Отсоединение клемм

- 5. Отсоединить клеммы.
- 6. С помощью отвертки поочередно вывести зацепы из отверстий на одном из торцов корпуса. Аккуратно потянуть на себя верхнюю крышку вместе с платами и снять ее.

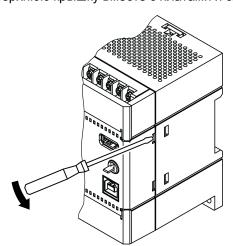


Рисунок 3.6 - Снятие крышки с контроллера

- 7. Перевернуть верхнюю крышку и с помощью изолированного инструмента извлечь разрядившуюся батарею.
- 8. Вставить новую батарею.

ВНИМАНИЕ

Следует использовать батарею только типа CR2032. Во время установки батареи следует соблюдать полярность! Несоблюдение полярности может привести к взрыву батареи и выходу из строя прибора.

Сборку корпуса и установку на место осуществлять в обратном порядке

После сборки и включения прибора убедитесь, что показания часов корректны. Чтобы скорректировать показания часов, см. РП.

4 Меры безопасности

По способу защиты от поражения электрическим током контроллер ПЛК160-24.X(M02)* соответствует классу III, ПЛК160-220.X(M02) соответствует классу II по ГОСТ 12.2.007.0-75.

ПРЕДУПРЕЖДЕНИЕ

* Следует подключать источник питания только со сверхнизким безопасным напряжением согласно ГОСТ 51841-2001.

Во время эксплуатации и технического обслуживания прибора следует соблюдать требования ГОСТ 12.3.019-80, «Правил эксплуатации электроустановок потребителей» и «Правил охраны труда при эксплуатации электроустановок потребителей».

Открытые контакты клемм прибора во время эксплуатации находятся под напряжением величиной до 250 В. Любые подключения к прибору и работы по его техническому обслуживанию следует производить только при отключенном питании контроллера и подключенных к нему исполнительных механизмов.

Не допускается попадание влаги на контакты выходных соединителей и внутренние элементы контроллера. Прибор запрещено использовать при наличии в атмосфере кислот, щелочей, масел и иных агрессивных веществ.

В случае применения прибора на объектах, подконтрольных Федеральной службе по экологическому, технологическому и атомному надзору (ФСЭТАН), объектах органов безопасности и охраны правопорядка или иных объектах, потенциально представляющих опасность для жизни и здоровья окружающих, требуется обязательная защита паролем ПЛК.

Требования к паролю:

- длина пароля должна составлять не менее 8 символов и не более 32 символов;
- пароль должен содержать буквы латинского алфавита и цифры.

Пароль рекомендуется менять не реже 1 раза в 3 месяца. Не допускается подключать прибор к локальной сети Ethernet с выходом в сеть Internet без обеспечения надежных средств межсетевого экранирования. Физический доступ к прибору должен быть разрешен только квалифицированному обслуживающему персоналу.

5 Монтаж

5.1 Установка контроллера

Во время монтажа прибора следует учитывать меры безопасности 4. Для обеспечения электробезопасности при монтаже прибора следует руководствоваться подразделом 2.2.

Перед монтажом прибора следует подготовить место в шкафу электрооборудования. Конструкция шкафа должна защищать прибор от попадания в него влаги, грязи и посторонних предметов.

Контроллер закрепляется на DIN-рейку или внутреннюю стену шкафа защелками вниз.

5.2 Установка на DIN-рейке

Для установки прибора на DIN-рейке следует:

- 1. Подготовить на DIN-рейке место для установки прибора в соответствии с размерами.
- 2. Установить прибор на DIN-рейку в соответствии с рисунком по стрелке 1 и с усилием прижать его к DIN-рейке в направлении стрелки 2 до фиксации защелки.

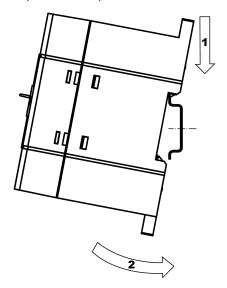


Рисунок 5.1 – Монтаж прибора на DIN-рейку

Для демонтажа прибора с DIN-рейки следует:

- 1. В проушину защелки вставить острие отвертки.
- 2. Защелку отжать по стрелке 1, после чего контроллер отвести от DIN-рейки по стрелке 2.
- 3. Обе защелки следует отжать одновременно.

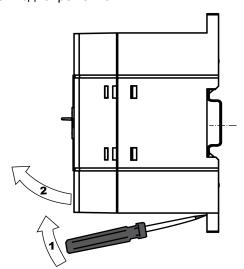


Рисунок 5.2 – Демонтаж прибора с DIN-рейки

5.3 Установка на стену

Для установки прибора на стену следует:

- 1. Подготовить место на стене для установки прибора в соответствии с размерами;
- 2. Установить прибор на стене и закрепить двумя винтами М3 (не входят в комплект поставки). Для крепления используются проушины у основания корпуса контроллера.

Во время монтажа следует оставить зазоры между стенками и корпусом прибора не менее 30 мм.

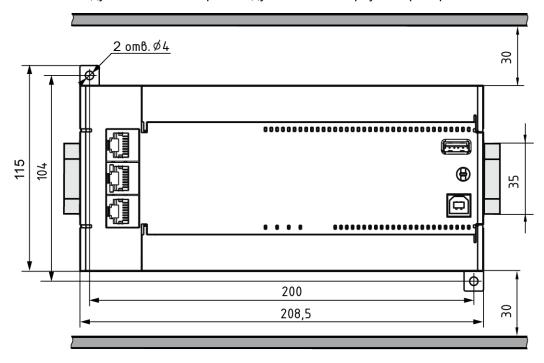


Рисунок 5.3 – Расстояние до стенок корпуса прибора во время монтажа для обеспечения вентиляции

6 Подключение

6.1 Рекомендации по подключению

Для обеспечения надежности электрических соединений рекомендуется использовать медные многожильные кабели. Концы кабелей следует зачистить, потом залудить их или использовать кабельные наконечники. Жилы кабелей следует зачищать так, чтобы их оголенные концы после подключения к прибору не выступали за пределы клеммника. Сечение жил кабелей должно быть не более 1 мм².

Общие требования к линиям соединений:

- во время прокладки кабелей следует выделить линии связи, соединяющие прибор с датчиком, в самостоятельную трассу (или несколько трасс), располагая ее (или их) отдельно от силовых кабелей, а также от кабелей, создающих высокочастотные и импульсные помехи;
- для защиты входов прибора от влияния промышленных электромагнитных помех линии связи прибора с датчиком следует экранировать. В качестве экранов могут быть использованы как специальные кабели с экранирующими оплетками, так и заземленные стальные трубы подходящего диаметра. Экраны кабелей с экранирующими оплетками следует подключить к контакту функционального заземления (FE) в щите управления;
- фильтры сетевых помех следует устанавливать в линиях питания прибора;
- искрогасящие фильтры следует устанавливать в линиях коммутации силового оборудования.

При монтаже системы, в которой работает прибор, следует учитывать правила организации эффективного заземления:

- все заземляющие линии следует прокладывать по схеме «звезда» с обеспечением хорошего контакта с заземляемым элементом:
- все заземляющие цепи должны быть выполнены проводами наибольшего сечения;
- запрещается объединять клемму прибора с маркировкой «Общая» и заземляющие линии.

6.2 Подключение питания

Прибор следует питать от распределенной питающей сети, не связанной непосредственно с питанием мощного силового оборудования. Во внешней цепи рекомендуется установить выключатель, обеспечивающий отключение прибора от сети. Следует использовать автоматический выключатель, рассчитанный на ток 1 A, характеристика B. Не следует осуществлять питание каких-либо устройств от сетевых контактов контроллера.

Схема подключения питания прибора представлены на рисунке 6.1:

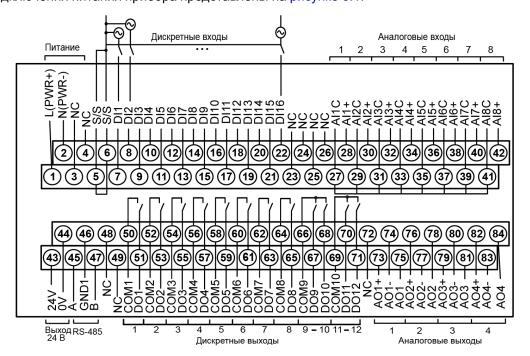


Рисунок 6.1 – Схема расположения и назначение клемм на приборе

6.3 Подключение входов и выходов

Подключение источников сигналов к дискретным входам, а также подключение исполнительных механизмов к дискретным выходам осуществляются в соответствии со схемами, приведенными на рисунках ниже.

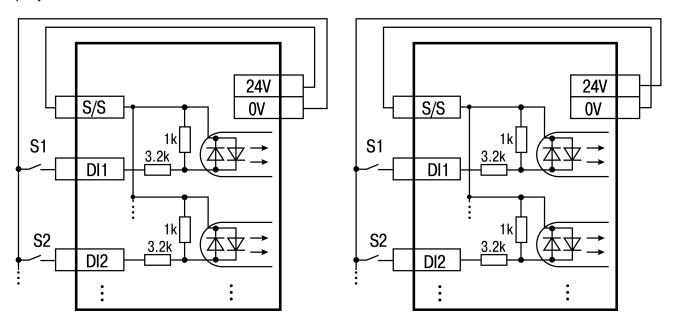


Рисунок 6.2 - Схема подключения контактных датчиков (S1-Sn) к входам прибора

ПРЕДУПРЕЖДЕНИЕ

Обе схемы равнозначны, может использоваться любая.

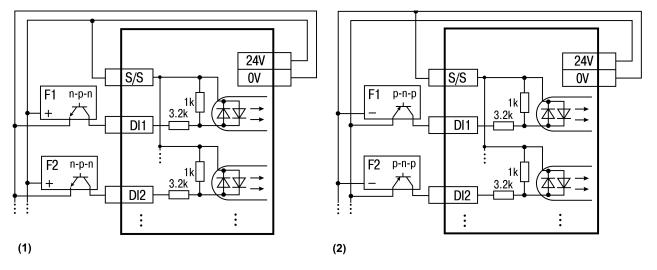


Рисунок 6.3 – Подключение к дискретным входам датчиков (F1–Fn), имеющих на выходе транзисторный ключ n-p-n-типа и p-n-p-типа

ПРЕДУПРЕЖДЕНИЕ

Если питание на входе контроллера ПЛК160-24(M02) составляет менее 15 В, для питания схем входов следует использовать не встроенный источник питания, а внешний с напряжением не ниже 15 В.

ПРЕДУПРЕЖДЕНИЕ

Суммарный ток потребления всех внешних датчиков и всех подключенных дискретных входов (7 мА на вход) не должен превышать 630 мА для варианта исполнения контроллера ПЛК160-24.X (М02) и не более 400 мА для контроллера ПЛК160-220.X(М02). Если потребление датчиков и входов больше указанного, то для питания датчиков следует использовать внешний блок питания требуемой мощности.

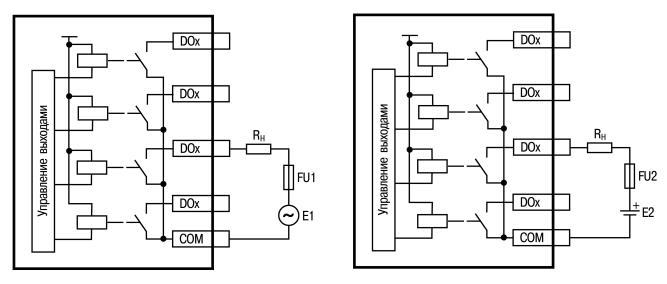


Рисунок 6.4 – Выходные элементы типа Р прибора с внешними цепями защиты при активной нагрузке, Rн – пользовательская нагрузка (двигатель, нагреватель, контактор и т. д.)

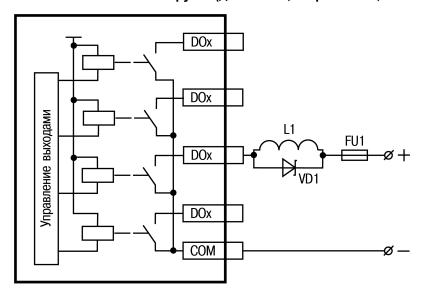


Рисунок 6.5 – Подключение цепей защиты при реактивной нагрузке

Релейные выходы не имеют внутренней защиты от перегрузки. По этой причине следует использовать элементы защиты, показанные на рисунке 6.6.

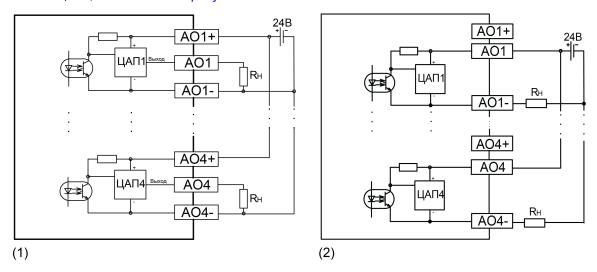


Рисунок 6.6 - Подключение аналоговых выходов типа «У», «А» (1) и «И» (2)

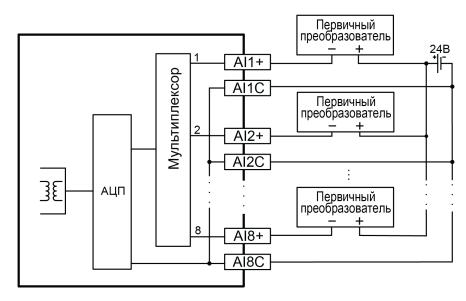


Рисунок 6.7 - Подключение аналоговых входов

Для индуктивных нагрузок, например, в случае использования контакторов или магнитных клапанов, управляемых постоянным напряжением, следует всегда использовать безынерционные диоды. Эти диоды часто устанавливаются в управляемые устройства заранее. Если диоды не установлены, то их необходимо смонтировать.

Если индуктивные нагрузки включаются релейными выходами с переменным напряжением, следует предусмотреть RC-цепочку, снижающую пиковое напряжение при включении нагрузки и, благодаря этому, защищающую контакты реле от повреждений при искровом разряде.

6.4 Подключение устройств к ПЛК160(М02)

Таблица 6.1 - Способы подключения

Подключаемое устройство	Порт ПЛК160	Кабель	Номер рисунка	Комментарий
Модули ввода/ вывода Мх110, панели индикации, также любое, поддерживающее RS-485 и протоколы из таблицы	RS-485	Витая пара	-	Подключение производить при отключенном напряжении питания всех устройств сети RS-485*. Длина линии связи не более 1000 м. Соблюдать полярность
Панели индикации ИП320, СП270, СП3XX, также любое устройство, поддерживающее RS-232 и протоколы из таблицы	RS-232 Debug	KC16	Рисунок 6.9	Подключение
	RS-232	КС16 или КС17 в зависимости от вида разъема на присоединяемом устройстве	Рисунок 6.9 и рисунок 6.10	следует производить при отключенном напряжении питания прибора и подключаемого устройства*. Длина кабеля не должна превышать 3 м
ПК, связь со SCADA-системой, модули ввода/ вывода Mx210, OwenCloud	Ethernet	Ethernet UTP Cat 5	Рисунок 6.11	Длина кабеля не должна превышать 100 м
ПК, установка связи с CODESYS	Debug RS-232	KC14	Рисунок 6.8	Кабель КС14 подключается к обесточенным прибору и ПК**

Продолжение таблицы 6.1

Подключаемое устройство	Порт ПЛК160	Кабель	Номер рисунка	Комментарий
Модем ПМ01, АС3- М и другие устройства	Debug RS-232	KC17	Рисунок 6.10	Во время подключения модема к порту Debug RS-232 на кабеле КС17 следует установить переключатель в положение «OFF»
ПК, установка связи с CODESYS	USB Device	USB B – USB A	-	Длина кабеля не должна превышать 1,8 м. Следует подключать спустя 3–5 секунд после подачи напряжения питания на прибор

\triangle

ВНИМАНИЕ

- * Если данное условие не может быть выполнено, то следует отключить питание хотя бы одного из этих устройств.
- ** Если отключение питания прибора и ПК невозможно, то рекомендуется следующий порядок подключения кабеля:
- кабель подключается к прибору с помощью разъема на передней панели;
- кабель следует подключить к СОМ-порту компьютера. Предварительно для выравнивания электрических потенциалов прибора и компьютера следует коснуться металлической частью разъема кабеля металлического корпуса СОМ-порта компьютера.

Невыполнение этих требований может привести к повреждению портов устройств!

Схемы подключаемых кабелей представлены на рисунках ниже.

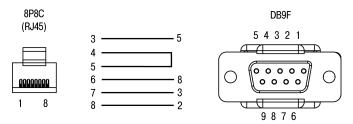


Рисунок 6.8 – Схема кабеля программирования КС14, входящего в комплект поставки

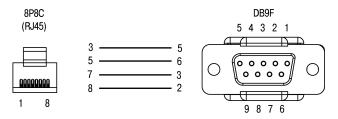


Рисунок 6.9 – Схема кабеля КС16

ПРЕДУПРЕЖДЕНИЕ

- 1. Для подключения может использоваться готовый кабель КС16 (приобретается отдельно).
- Кабель программирования КС14 из комплекта поставки предназначен для подключения к ПК и не может быть использован для подключения к порту Debug RS-232 других устройств. На порт RS-232 это правило не распространяется, и другие устройства могут подключаться к нему с помощью кабеля КС17 (приобретается отдельно).

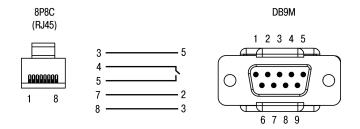


Рисунок 6.10 - Схема кабеля КС17 «ПЛК-Модем»

Рисунок 6.11 – Разводка кабеля для соединения прибора с компьютером по сети Ethernet напрямую

Примерные схемы подключений контроллера приведены на рисунках ниже.

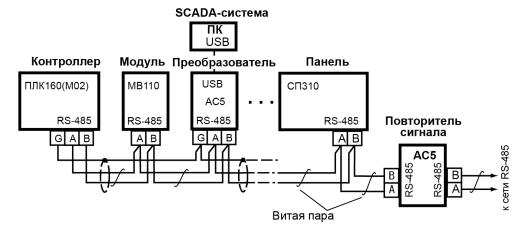
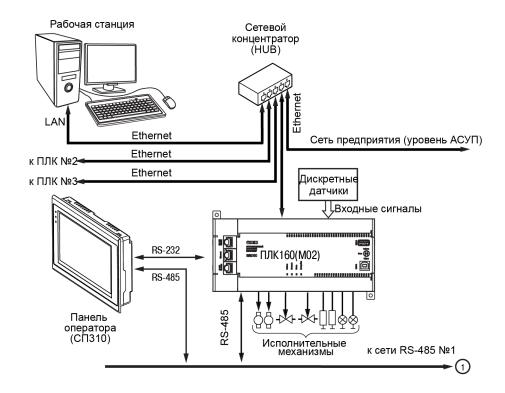



Рисунок 6.12 – Пример схемы подключений в сеть нескольких контроллеров ПЛК160(M02) (AC4, AC5, MB110, CП310 – приборы разработки OBEH)

Модули ввода/вывода Mx110

Рисунок 6.13 – Пример структуры соединений во время использования прибора в системе управления

7 Использование по назначению

Перед использованием прибор следует запрограммировать, то есть создать пользовательскую программу. После создания пользовательская программа может быть сохранена в энергонезависимой Flash-памяти прибора и запускаться на выполнение после включения питания или перезагрузки.

Прибор программируется с помощью CODESYS 2.3. С помощью одного из интерфейсов контроллера: Debug RS-232, USB-Device или Ethernet.

Прибор подключается к ПК через интерфейс Debug RS-232 с помощью кабеля программирования КС14. Кабель включается в гнездо (Debug RS-232) на лицевой панели прибора. Ответная часть кабеля подключается к СОМ-порту ПК.

Прибор подключается к ПК через порт USB-Device стандартным кабелем типа USB A-USB В (в комплект поставки не входит). Длина кабеля не должна превышать 1,8 м.

8 Эксплуатация

8.1 Время реакции входов/выходов

Время реакции зависит от типов применяемых входов/выходов. Аналитическое выражение для определения времени полного отклика прибора (Тоткл):

$$T_{OTKJ} = T_{BX} + 2T_{UKJA} + T_{BLIX}$$

,

где, $T_{\rm BX}$ — время реакции входа на изменение физического сигнала (включая фильтрацию). По умолчанию значения для обычных входов — 1,0 мс, для быстродействующих входов — 0,001 мс (в таблице 3.2 данный параметр называется «Минимальная длительность импульса, воспринимаемого дискретным входом»);

Т_{цикла} – время цикла ПЛК. Установленное значение по умолчанию – 1 мс (стабилизированное). Настраивается в окне «Конфигурация ПЛК (PLC Configuration)» CODESYS. Длительность цикла можно узнать, подключив модуль статистики, – он подробно описан в РП;

 $T_{вых}$ — задержка на срабатывание выхода. Значения для релейных выходов — 50 мс, для обычных транзисторных выходов — 5 мс, для быстродействующих транзисторных выходов — 0,02 мс.

Примеры расчета времени полного отклика контроллера для разных вариантов использования входов и выходов:

Пример: наиболее медленный отклик может быть реализован при использовании обычных входов, релейных выходов и установленном фиксированном значении (по умолчанию) времени цикла ПЛК:

Пример
$$T_{\text{откл}} = T_{\text{вх}} + 2T_{\text{цикла}} + T_{\text{вых}} = 1 + 2 \cdot 1 + 50 = 53 \text{ мс.}$$

8.2 Пробный пуск

Если прибор находился длительное время при температуре ниже рабочей, то перед включением и началом работ с прибором необходимо выдержать его в помещении с температурой, соответствующей рабочему диапазону, в течение 30 мин.

Перед подачей питания на прибор следует проверить правильность подключения напряжения и его уровень.

Для моделей с питанием переменным током:

- если напряжение ниже 90 В, то контроллер работать не будет (точный порог отключения не регламентируется);
- если напряжение более 264 В, то возможен выход прибора из строя.

Для моделей с питанием от источника постоянного напряжения:

- если напряжение ниже 9 В, то работа контроллера не гарантируется (контроллер прекращает функционировать, однако, из строя не выходит);
- если напряжения питания выше уровня 30 В, то возможен выход прибора из строя.

Во время подачи на прибор напряжения питания допустимого диапазона на лицевой стороне корпуса начинает светиться зеленым светом индикатор «ПИТАНИЕ». Если напряжение питания ниже допустимого, индикатор светиться не будет.

После включения питания контроллер загрузится. И кратковременно включатся звуковой сигнализатор и все элементы индикации. Если в контроллер загружена пользовательская программа и трехпозиционный переключатель установлен в положении «Старт», то пользовательская программа сразу начинает исполняться.

9 Техническое обслуживание

Во время выполнения работ по техническому обслуживанию контроллера следует соблюдать меры безопасности из раздела 4.

Технический осмотр контроллера проводится обслуживающим персоналом не реже одного раза в 6 месяцев и включает в себя выполнение следующих операций:

- очистку корпуса и клеммных колодок контроллера от пыли, грязи и посторонних предметов;
- проверку заряда батареи по индикатору «Бат.» (когда прибор находится в рабочем режиме);
- проверку качества подключения внешних связей.

Обнаруженные во время осмотра недостатки следует немедленно устранить.

10 Маркировка

На корпус прибора нанесены:

- наименование прибора;
- степень защиты корпуса по ГОСТ 14254;
- напряжение и частота питания;
- потребляемая мощность;
- класс защиты от поражения электрическим током по ГОСТ 12.2.007.0;
 знак соответствия требованиям ТР ТС (EAC);
- страна-изготовитель;
- заводской номер прибора и год выпуска.

На потребительскую тару нанесены:

- наименование прибора;
- знак соответствия требованиям ТР ТС (EAC);
- страна-изготовитель;
- заводской номер прибора и год выпуска.

11 Упаковка

Упаковка прибора производится в соответствии с ГОСТ 23088-80 в потребительскую тару, выполненную из коробочного картона по ГОСТ 7933-89.

Упаковка прибора при пересылке почтой производится по ГОСТ 9181-74.

12 Транспортирование и хранение

Прибор должен транспортироваться в закрытом транспорте любого вида. В транспортных средствах тара должна крепиться согласно правилам, действующим на соответствующих видах транспорта.

Условия транспортирования должны соответствовать условиям 5 по ГОСТ 15150-69 при температуре окружающего воздуха от минус 25 до плюс 55 °C с соблюдением мер защиты от ударов и вибраций.

Прибор следует перевозить в транспортной таре поштучно или в контейнерах.

Условия хранения в таре на складе изготовителя и потребителя должны соответствовать условиям 1 по ГОСТ 15150-69.В воздухе не должны присутствовать агрессивные примеси.

Прибор следует хранить на стеллажах.

13 Комплектность

Наименование	Количество
Контроллер ПЛК160(M02) (исполнение в соответствии с заказом)	1 шт.
Кабель КС14	1 шт.
Заглушка Ethernet	3 шт.
Паспорт и Гарантийный талон	1 экз.
Краткое руководство	1 экз.

ПРЕДУПРЕЖДЕНИЕ
Изготовитель оставляет за собой право внесения дополнений в комплектность прибора без уведомления или согласования с пользователем.

14 Гарантийные обязательства

Изготовитель гарантирует соответствие прибора требованиям ТУ при соблюдении условий эксплуатации, транспортирования, хранения и монтажа.

Гарантийный срок эксплуатации – 24 месяца со дня продажи.

В случае выхода прибора из строя в течение гарантийного срока при соблюдении условий эксплуатации, транспортирования, хранения и монтажа предприятие-изготовитель обязуется осуществить его бесплатный ремонт или замену.

Порядок передачи прибора в ремонт содержится в паспорте и в гарантийном талоне.

Россия, 111024, Москва, 2-я ул. Энтузиастов, д. 5, корп. 5

тел.: +7 (495) 641-11-56, факс: (495) 728-41-45

тех. поддержка 24/7: 8-800-775-63-83, support@owen.ru

отдел продаж: sales@owen.ru

www.owen.ru 1-RU-49602-1.4